• Title/Summary/Keyword: Spermatozoa incubation

Search Result 78, Processing Time 0.018 seconds

Changes of Glycosidase Activity of Frozen-Thawed Spermatozoa in Human

  • Lee, Chae-Sik;Lee, Sang-Chan;Lee, Ji-Eun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.185-190
    • /
    • 2011
  • To evaluate the effect of spermatozoa culture on glycosidase activity of frozen-thawed spermatozoa in human, the spermatozoa were treated experimentally and assayed for activities of ${\alpha}$-L-fucosidase, ${\alpha}$-D-mannosidase, ${\beta}$-D-galactosidase and N-acetyl-${\beta}$-D-glucosaminidase (${\beta}$-GlcNAc'ase). The ${\beta}$-GlcNAc'ase activity was at least two-folds higher than other glycosidases regardless of spermatozoa incubation (p<0.05). The spermatozoa motility was decreased with incubation periods, but no effects by different glycosidases on the changes of spermatozoa motility during the various periods of incubation. In all glycosidases, the spermatozoa-zona binding rates in spermatozoa without incubation were higher than in spermatozoa incubated for 2 h (p<0.05). ${\beta}$-GlcNAc'ase is present mainly in the plasma membrane of spermatozoa frozen-thawed in human. It was also shown that the glycosidase activity was increased in all glycosidases in spite of lower sperm-zona binding by spermatozoa incubation.

Changes of Glycosidase Activity and Fertilizing Ability in Vitro by Incubation of Frozen-Thawed Spermatozoa in the Pig (돼지 동결정액의 배양에 따른 체외수정능력과 Glycosidase Activity의 변화)

  • 황인선;정희태;양부근;김정익;박춘근
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.153-161
    • /
    • 2003
  • This study has evaluated effect of the spermatozoa incubation on the glycosidase activity and fertilizing ability in vitro in the pig. To identify sperm glycosidases specific for sugar residues found in the zona pellucida of pig oocytes, the spermatozoa were treated experimentally and assayed for activities of $\alpha$-L-fucosidase, $\alpha$-D-mannosidase, $\beta$-D-galactosidase and N-acetyl-$\beta$-D-glucosaminidase ($\beta$-GlcNAc'ase). The glycosidases activity were higher in spermatozoa incubated for 2h than without incubation. The $\beta$-GlcNAc'ase activity was at least two-fold higher than other glycosidase regardless of spermatozoa incubation. In the same glycosidases, the activity had a tendency to increase as time of spermatozoa incubation was prolonged, but there were no differences in spermatozoa incubated during the various periods (4~24h). The percentages of spermatozoa that reached acrosome reaction were affected by glycosidases in the medium (P<0.05, for mannosidase), and were higher in spermatozoa with that than without incubation. On the other hand, the spermatozoa motility were decreased with incubation periods, but no effects by different glycosidases on the change of sperm motility during the various periods of incubation. In other experiment, the binding and penetration of pig spermatozoa were tested with oocytes matured in vitro in the presence of various glycosidase. The penetration rates were decreased with incubation of spermatozoa when oocytes were inseminated in medium with different glycosidases. These rates were higher in spermatozoa non-incubated than with incubation for 2h (P<0.05 for GlcNAc'ase; P<0.01 for control group). The sperm-zona binding rate in control group were higherthan in medium with glycosidases. In addition, the highest binding rate were obtained in medium with GlcNAc'ase. In all glycosidases, the sperm-zona binding rate in spermatozoa without incubation were higher than incubation for 2h. The significant differences were obtained in spermatozoa treated with $\alpha$-D-mannosidase (P<0.05). These results suggest that $\beta$-GlcNAc'ase is present mainly in the plasma membrane of pig spermatozoa. It was also shown that the glycosidase activity were increased in all glycosidases in spite of low sperm-zona binding rate and penetration rates by spermatozoa incubation.

Exposure of chlorpyrifos impairs the normal function of boar spermatozoa

  • Adikari Arachchige Dilki Indrachapa Adikari;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.307-316
    • /
    • 2022
  • The misuse of pesticides has resulted in environmental pollution, which directly or indirectly affects all life on earth. Chlorpyrifos is a chlorinated organophosphorus pesticide that is commonly used in agriculture. The aim of this study was to investigate the effects of chlorpyrifos on the fertilization function of boar spermatozoa. Sperm samples from boars were subjected to varying concentrations of chlorpyrifos from 10 to 200 µM for two incubation periods, 30 min or 2 hrs. The boar spermatozoa were then evaluated for motility, motion kinematics, viability, acrosome integrity, chromatin stability, and generation of intracellular reactive oxygen species (ROS). There was a significant percentage reduction in sperm motility and motion kinematic parameters after both incubation periods (p < 0.05). The proportion of viable spermatozoa decreased after incubation for 30 min and 2 hrs in a dose-dependent manner (p < 0.05). A significantly lower percentage of normal acrosomes was observed in spermatozoa exposed to 200 µM chlorpyrifos over both incubation periods, compared to the controls. The damage to sperm DNA was significantly higher when the exposure time to chlorpyrifos was longer. There was a significant increase in the ROS levels in spermatozoa incubated with chlorpyrifos for 2 hrs (p < 0.05). From the results of the present study, it is concluded that direct exposure of boar spermatozoa to chlorpyrifos altered boar sperm characteristics, suggesting potential toxicity that may affect the male reproductive function.

Study on Motility and Acrosome Morphology of Fresh and Deep-frozen Korean Native Goat Spermatozoa (액상 및 동결보존된 한국재래산양 정자의 운동성 및 첨체형태에 관한 연구)

  • 황덕수;양문한;이규승;박창식
    • Korean Journal of Animal Reproduction
    • /
    • v.13 no.1
    • /
    • pp.18-25
    • /
    • 1989
  • This study was carried out to investigate the general semen characteristics of the Korean native goat and the effect of temperature, incubation time, dilution rate, freezing rate and glycerol concentration on motility and NAR (normal apical ridge) acrosome of fresh and frozen Korean native goat spermatozoa. 1. Average semen volume per ejaculate, motility, concentration and pH of fresh Korean native goat spermatozoa were 0.19${\pm}$0.09 ml, 94.5${\pm}$0.47%, 26.17${\times}$108${\pm}$1.68/ml and 6.63${\pm}$0.18, respectively. 2. Motility and NAR acrosome of fresh spermatozoa during incubation were higher at 22$^{\circ}C$ than at 5$^{\circ}C$ or 37$^{\circ}C$(P<.01). 3. Motility and NAR acrosome of spermatozoa diluted 1:4 during incubation were higher at 22$^{\circ}C$ than at 5$^{\circ}C$ or 37$^{\circ}C$(P<.01). 4. Motility and NAR acrosome of spermatozoa during incubation were higher for samples diluted 1:1, 1:2, or 1:4 than for samples diluted 1:6(P<.01). 5. Motility and NAR acrosome of post-thaw spermatozoa were higher at freezing rate of 12$^{\circ}C$/min than at freezing rate of 1$^{\circ}C$/min or 24$^{\circ}C$/min when glycerol concentration was 9%(P<.01).

  • PDF

Capacitation and acrosome reaction differences of bovine, mouse and porcine spermatozoa in responsiveness to estrogenic compounds

  • Ryu, Do-Yeal;Kim, Ye-Ji;Lee, June-Sub;Rahman, Md. Saidur;Kwon, Woo-Sung;Yoon, Sung-Jae;Pang, Myung-Geol
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.26.1-26.10
    • /
    • 2014
  • Background: Endocrine disruptors are exogenous substance, interfere with the endocrine system, and disrupt hormonal functions. However, the effect of endocrine disruptors in different species has not yet been elucidated. Therefore, we investigated the possible effects of $17{\beta}$-estradiol (E2), progesterone (P4), genistein (GEN) and 4-tert-octylphenol (OP), on capacitation and the acrosome reaction in bovine, mouse, and porcine spermatozoa. In this in vitro trial, spermatozoa were incubated with $0.001-100{\mu}M$ of each chemical either 15 or 30 min and then assessed capacitation status using chlortetracycline staining. Results: E2 significantly increased capacitation and the acrosome reaction after 30 min, while the acrosome reaction after 15 min incubation in mouse spermatozoa. Simultaneously, capacitation and the acrosome reaction were induced after 15 and 30 min incubation in porcine spermatozoa, respectively. Capacitation was increased in porcine spermatozoa after 15 min incubation at the lowest concentration, while the acrosome reaction was increased in mouse spermatozoa after 30 min (P < 0.05). E2 significantly increased the acrosome reaction in porcine spermatozoa, but only at the highest concentration examined (P < 0.05). P4 significantly increased the acrosome reaction in bovine and mouse spermatozoa treated for 15 min (P < 0.05). The same treatment significantly increased capacitation in porcine spermatozoa (P < 0.05). P4 significantly increased capacitation in mouse spermatozoa treated for 30 min (P < 0.05). GEN significantly increased the acrosome reaction in porcine spermatozoa treated for 15 and 30 min and in mouse spermatozoa treated for 30 min (P < 0.05). OP significantly increased the acrosome reaction in mouse spermatozoa after 15 min (P < 0.05). Besides, when spermatozoa were incubated for 30 min, capacitation and the acrosome reaction were higher than 15 min incubation in E2 or GEN. Furthermore, the responsiveness of bovine, mouse and porcine spermatozoa to each chemical differed. Conclusions: In conclusion, all chemicals studied effectively increased capacitation and the acrosome reaction in bovine, mouse, and porcine spermatozoa. Also we found that both E2 and P4 were more potent than environmental estrogens in altering sperm function. Porcine and mouse spermatozoa were more responsive than bovine spermatozoa.

Improvement of pregnancy rate after deep uterine artificial insemination with frozen-thawed cauda epididymal spermatozoa in Hanwoo cattle

  • Kang, Sung-Sik;Kim, Ui-Hyung;Ahn, Jun Sang;Won, Jeong Il;Cho, Sang-Rae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.82-90
    • /
    • 2021
  • In the present study, we examined if deep uterine artificial insemination (DUAI) can improve the pregnancy rate of artificial insemination (AI) using epididymal spermatozoa (ES) in Hanwoo cattle. The estrus cycles of 88 Hanwoo cows were synchronized, and 17 cows were artificially inseminated using the DUAI method with ES, 20 cows were artificially inseminated via the uterine body (BUAI) method with ES, and as a control, 51 cows were inseminated by using the BUAI method with ejaculated spermatozoa from 1 proven bull after frozen thawing. The pregnancy rate of the DUAI method (58.8%) was higher than that of the BUAI method (25.0%, p = 0.0498). The motility of ES was examined immediately after thawing and after 3 and 6 h of incubation. The rapid progressive sperm motility of the control group was significantly higher than that of the ES group immediately after thawing and after 3 and 6 h of incubation (p < 0.05). The straight line velocity and average path velocity of the ES group after 6 h of incubation were significantly lower than those in the control group (p < 0.05). The linearity and amplitude of lateral head of ES were lower than those at 6 h (p < 0.05). The flagellar beat cross frequency and hyperactivation of ES were lower than the control spermatozoa immediately after thawing and at 3 h (p < 0.05). These motility parameters suggested that ES had a low motility and fertilization ability compared to the control spermatozoa. After frozen-thawing and 3 h of incubation, the percentage of live spermatozoa with intact acrosomes in the ES was significantly lower than that in ejaculated spermatozoa (p < 0.05). Our findings suggested that the DUAI method can overcome the low pregnancy rate of ES, despite the low motility, viability, and fertilization ability of ES.

Establishment of Optimal Conditions for the Hypoosmotic Swelling Test to Evaluate the Integrity of Spermatozoal Plasma Membrane in Dog

  • Jang Hyun-Yong;Jung Yoo-Sung;Kim Jong-Taek;Park Chun-Keun;Cheong Hee-Tae;Kim Choung-Ik;Yang Hoo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • Hypoosmotic swelling test (HOST) is used for evaluating the plasma membrane function and fertilizing ability in mammal spermatozoa. However, HOS solutions and experimental conditions have not been determined clearly for assessing canine spermatozoa. This study was conducted to examine the HOS solutions and assay conditions, including incubation time (30 to 120 min), storage temperature (4, 17 and $20^{\circ}C$), semen status (fresh and frozen). Maximum spermatozoal plasma membrane swelling was obtained in an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min. The storage temperature and semen status affected the percentage of HOS positive spermatozoa. The HOS test adapted to canine spermatozoa in this study was simple and highly consistent assay with good repeatability. The optimal condition of HOST in canine spermatozoa is an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min regardless of semen storage temperature and semen status.

Prolonged semen incubation alters the biological characteristics of human spermatozoa

  • Sayed Abbas Datli Beigi;Mohammad Ali Khalili;Ali Nabi;Mohammad Hosseini;Abolghasem Abbasi Sarcheshmeh;Mojdeh Sabour
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.270-276
    • /
    • 2022
  • Objective: The present study assessed the biological characteristics of human spermatozoa at different time intervals (0, 1, 1.5, and 2 hours) after incubation at 37℃. Methods: Twenty-five normozoospermic semen samples were incubated at 37℃. Incubation was performed at four time intervals of 0 (after liquefaction), 1, 1.5, and 2 hours. The samples were evaluated for sperm parameters at each time interval. Results: The rate of sperm progressive motility decreased at 1.5 hours compared to 0 hours as well as 2 hours compared to 1 hour and 0 hours. The rate of non-motile spermatozoa also decreased after 2 hours compared to after 0 hours. No significant changes were observed in sperm viability (p=0.98) and non- progressive motility (p=0.48) at any time intervals. Abnormal sperm morphology increased at 1.5 hours of incubation time (p<0.001). No significant changes were observed in DNA fragmentation at 1 hour compared to 0 hours (median [interquartile range]: 19.5 [4] vs. 19 [4]), as well as at 1.5 hours compared to 1 hour (20 [5]). However, a significant increase in DNA fragmentation was observed at 1.5 hours compared to 0 hours. The mitochondrial membrane potential decreased remarkably after 1 hour of incubation time. No significant differences were observed in the acrosome reaction or malonaldehyde levels at any time point (p=0.34 and p=0.98, respectively). Conclusion: The incubation of normozoospermic samples before use in assisted reproductive technology should be less than 1.5 hours to minimize the destructive effects of prolonged incubation time on general and specific sperm parameters.

Adverse effects of pesticide/metabolites on boar spermatozoa

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Jung Min Heo;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.941-952
    • /
    • 2023
  • The metabolites of agrichemicals, such as organophosphorus pesticides, are known to be more hazardous than their parent pesticides. 3,5,6-trichloro-2-pyridinol (TCP) is a major degradation product of chlorpyrifos, one of the organophosphate insecticides widely used in agriculture. In vivo or in vitro exposure to chlorpyrifos has been known to interfere with male reproductive functions, leading to reduced fertility in mammals. Therefore, this study was performed to examine the changes in the fertilization competence of boar spermatozoa exposed to TCP. Sperm samples were subjected to varying concentrations of TCP (10, 50, 100, 200 µM) and different periods of incubation. Sperm motility, motion kinematics, viability, acrosome integrity, intracellular reactive oxygen species (ROS) production, and gene expression levels (ODf2, ZPBP2, AKAP3 and AKAP4) were evaluated after exposure of the sperm to TCP. A significant dose-dependent reduction in motility was observed in sperm samples incubated with TCP compared to the controls after both incubation periods. Sperm viability was significantly decreased in samples incubated with 50, 100, and 200 µM TCP in both incubation periods. A significantly lower percentage of normal acrosomes and gene expression levels were observed in sperm samples exposed to 50, 100, and 200 µM TCP after both incubation periods, compared to the controls. There was a significant increase in the ROS production in spermatozoa incubated with 100 - 200 µM TCP after both incubation periods. Consequently, the direct exposure of boar spermatozoa to TCP interferes with sperm functions and leads to decreased fertilization. In order to identify and address the various causes of reproductive decline, the impact of chemical metabolites needs to be discussed in depth.

Fipronil impairs the fertilization competence of boar spermatozoa

  • Adikari Arachchige Dilki Indrachapa Adikari;Malavige Romesha Chandanee;Byeong-Yeon Kim;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2022
  • Fipronil is a popular insecticide used in both agricultural and domestic fields. Factors that affect sperm and eggs have a direct influence on reproductive outcomes. This study was undertaken to assess the effect of varying concentrations (10 - 200 μM) of fipronil and incubation times (30 min and 2 hrs) on boar spermatozoa. Spermatozoa were evaluated for motility, motion kinematics, viability, chromatin stability, and for the generation of intracellular reactive oxygen species (ROS) and the results were compared to those from corresponding controls. The findings revealed a significant, dose-dependent reduction in sperm motility in all fipronil treatment groups at 30 min of incubation (p < 0.05). A similar dose-dependent reduction in sperm motility was observed subsequent to fipronil exposure for 2 hrs of incubation (p < 0.05). Groups treated with fipronil showed a gradual reduction in motion kinematics (p < 0.05). Moreover, a significantly higher percentage of dead sperm was observed at 200 μM fipronil, as compared to the highest live percentage obtained in controls (p < 0.05). Evaluating the sperm chromatin integrity revealed a significantly higher percentage of damaged chromatin in spermatozoa incubated with 200 μM of fipronil. Moreover, ROS production was significantly higher in fipronil-exposed sperm (p < 0.05). In conclusion, boar spermatozoa incubated with fipronil showed decreased levels of sperm motility and viability, weaker chromatin integrity, and increased levels of intracellular ROS generation, all of which indicate that exposure to fipronil potentially impairs the fertilization competence of boar spermatozoa.