• Title/Summary/Keyword: Spermatogonial stem cells

Search Result 42, Processing Time 0.035 seconds

Development of a Three-dimensional Hydrogel System for the Maintenance of Porcine Spermatogonial Stem Cell Self-renewal

  • Park, Ji Eun;Park, Min Hee;Kim, Min Seong;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.343-351
    • /
    • 2017
  • Porcine spermatogonial stem cells (SSCs) prefer three-dimensional (3D) culture systems to 2D ones for the maintenance of self-renewal. Of the many 3D culture systems, agar-based hydrogels are candidates for supporting porcine SSC self-renewal, and there are various types of agar powder that can be used. In this study, we sought to identify an agar-based 3D hydrogel system that exhibited strong efficacy in the maintenance of porcine SSC self-renewal. First, 3D hydrogels with different mechanics were prepared with various concentrations of Bacto agar, lysogeny broth (LB) agar, and agarose powder, and the 3D hydrogel with the strongest alkaline phosphatase (AP) activity and greatest increase in colony size was identified for the different types of agar powder. Second, among the porcine SSCs cultured in the different 3D hydrogels, we analyzed the colony formation, morphology, and size; AP activity; and transcription and translation of porcine SSC-related genes, and these were compared to determine the optimal 3D hydrogel system for the maintenance of porcine SSC self-renewal. We found that 0.6% (w/v) Bacto agar-, 1% (w/v) LB agar-, and 0.2% (w/v) agarose-based 3D hydrogels showed the strongest maintenance of AP activity and the most pronounced increase in colony size in the culture of porcine SSCs. Moreover, among these hydrogels, the strongest transcription and translation of porcine SSC-related genes and largest colony size were detected in porcine SSCs cultured in the 0.2% (w/v) agarose-based 3D hydrogel, whereas there were no significant differences in colony formation and morphology. These results demonstrate that the 0.2% (w/v) agarose-based 3D hydrogel can be effectively used for the maintenance of porcine SSC self-renewal.

C-kit Expressing Male Germ Cells were Highly Sensitive to Busulfan Treatment and Apoptosis of Male Germ Cells Induced by Busulfan Treatment was not Caused by Fas/FalsL or p53

  • Ok Do-Won;Lee Mi-Suk;Gwon Deuk-Nam;Kim Jin-Hoe
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.4-4
    • /
    • 2002
  • Male germ cell apoptosis has been extensively explored in rodent. In contrast, very little is known about their susceptibility to apoptosis stimuli of developing germ cell stages at the time when germ cell depletion after busulfan treatment occurs. Furthermore, it is still unanswered how spermatogonial stem cells are resistant to busulfan treatment. Spontaneous apoptosis of germ cells was observed in the testis of adult mice and experimentally induced busulfan treated mice increased this apoptosis to such an extent that there was a decrease in the weight of the testis. (omitted)

  • PDF

Etv5, a transcription factor with versatile functions in male reproduction

  • Eo, Jinwon;Song, Haengseok;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.2
    • /
    • pp.41-45
    • /
    • 2012
  • Transcription factors govern diverse aspects of cell growth and differentiation as major switches of gene expression. Etv5, a member of the E26 transformation-specific family of transcription factors, has many stories to share when it comes to reproduction. Etv5 deficient mice show complex infertility phenotypes both in males and females. In males, the infertility phenotype exhibited by Etv5 deficiency is sexually dimorphic, and it involves both somatic cells and germ cells. In $Etv5^{-/-}$ female mice, the problem is more complicated by hormonal involvement. This review synthesizes old and new information on this versatile transcription factor-from the inadvertent discovery of its role in the testes to its newly discovered role in maintaining spermatogonial stem cells.

Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

  • Jeon, Hye Lyun;Yi, Jung-Sun;Kim, Tae Sung;Oh, Youkyung;Lee, Hye Jeong;Lee, Minseong;Bang, Jin Seok;Ko, Kinarm;Ahn, Il Young;Ko, Kyungyuk;Kim, Joohwan;Park, Hye-Kyung;Lee, Jong Kwon;Sohn, Soo Jung
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.107-118
    • /
    • 2017
  • Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration ($IC_{50}$) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.

New strategies for germ cell cryopreservation: Cryoinjury modulation

  • Sang-Eun Jung;Buom-Yong Ryu
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.213-222
    • /
    • 2023
  • Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.

Production of Transgenic Animals by the Testis-Mediated Gene Transfer II. Production of Transgenic Korean Native Goats (정소실질내 유전자 도입에 의한 형질전환동물의 생산 II. 형질전환 한국재래산양의 생산)

  • 윤창현;장규태;김성현;박미령;주학진;오석두;이병오
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.1
    • /
    • pp.13-18
    • /
    • 1999
  • The totipotential spermatogonial stem cells of adult testis which give rise to mature sperm cells is well-known to incorporate foreign DNA as well as those of somatic cells. Also, the integration rates of foreign DNA after haploid stages are generally known to decrease and /or is simply bound foreign DNA into the sperm plasma membrane. To overcome these problems, liposome and DNA complexes were used to determine how direct injection of these complexes into testis were integrated into sperm genome and resulted in transgenic offspring. To study this purpose, cation liposome was gently mixed with WAF/hGH DNA (1 : 2) and the complexes were injected into testis. At 10, 20, 40, 60, and 80 days after direct injection into testis, mature sperm cells were recovered by using artificial virgin method from two goats and each semen except a part of semen used for DNA analysis such as PCR or Southern blotting was cryopreserved for the artificial insemination. The results obtained in this study are summarized as follows. 1. By PCR, the presence of exogenous DNA was confirmed up to 80 days after injection with liposome/DNA complexes. The highest integration rates were obtained at day 40 after direct injection. This results suggested that spermatogonial stem cells were integrated exogenous DNA into their genome. 2. Among 23 Korean Native Goats which were artificially inseminated, 4 goats resulted in pregnancy and produced 7 young goats. 3. Two young goats were confirmed as a transgenic by PCR and Southern blot analysis. Therefore, our results suggested that testis-mediated gene transfer can be used as a feasible tools for the production of transgenic livestock.

  • PDF

Functional Gene Analysis for the Protection of Male Germ Cell Injury Induced by Busulfan Treatment using cDNA Microarray Analysis

  • 최윤정;옥도원;황규찬;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.21-21
    • /
    • 2003
  • Male germ cell apoptosis has been extensively explored in rodent. In contrast, very little is known about their susceptibility to apoptosis stimuli of developing germ cell stages at the time when germ cell depletion after busulfan treatment occurs. Furthermore, it is still unanswered how spermatogonial stem cells are resistant to busulfan treatment. We examined the change of gene expression in detail using cDNA microarray analysis of mouse testis treated with busulfan. A subtoxic dose of busulfan (40mg/kg of body weight) transiently increased 228 mRNA levels among of the 8000 genes analyzed. TagMan analysis confirmed that the mRNA levels such as defensive protein, support protein, enzymatic protein, transport protein, and hormonal protein were rapidly increased. These results were re-confirmed by real-time PCR analysis. However, the expression levels of these genes induced by busulfan treatment were significantly reduced in control testis, indicating that both of male germ cells and somatic cells after busulfan treatment induces self-defense mechanism for protection of testicular cell death. Among them, we conclude that defense proteins play a key role in testis injury induced by busulfan.

  • PDF

Cytological analysis of pregnancy-associated plasma protein-A expression in porcine neonatal testis (미성숙 돼지 정소에서 pregnancy-associated plasma protein-A의 발현의 세포학적 분석)

  • Kim, Ji-youn;Oh, Keon Bong;Byun, Sung June;Ock, Sun-A;Lee, Hwi-Cheul;Hwang, Seong-Su;Park, SangHyun;Ha, Wootae;Woo, Jae-Seok;Song, Hyuk
    • Journal of Embryo Transfer
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • The identification of biomarkers of a living tissues is essentially required to understand specific functions of the cells. In previous study, we reported IGFBP 3 as one of the putative biomarkers, by showing specific expression at porcine spermatogonial stem cells (SSCs) of early stage of porcine testis. In this study, we analyzed the expression of seven members of IGFBP family (IGFBPs) in SSCs and histological expression pattern of pregnancy-associated plasma protein-A (PAPP-A), which plays a role on the growth promoting enzyme by cleavage of IGFBPs in testis of 5 days old pig. RT-PCR analysis showed that IGFBP 1, 2, 3, 4, and 6 were expressed at high level specifically in porcine SSCs compared with whole testis. We performed immunohisotochemical staining of testis sections with PAPP-A and protein gene product 9.5 (PGP9.5) which are the known biomarkers for SSCs. We were not able to find co-expression of PAPP-A and PGP9.5; PAPP-A was expressed only in Sertoli cells and PGP9.5 expression was confirmed in spermatogonium. Additionally, we were able to confirm the GATA4 expression in Sertoli and Leydig cells as a regulator of Sertoli cell function was not detected PGP9.5 expressing cells, indicating indirect evidence of that cytolocalization of PAPP-A expression is limited in Sertoli cells. These results suggested that the PAPP-A expressed in Sertoli cells may play role on regulation of development and differentiation of testicular cells through the IGF axis in neonatal porcine testis.

Characterization of Spermatogonial Stem Cells and Testicular Cells in Chicken

  • Lee, Bo Ram;Lee, Young Mok;Park, Tae Sub;Jung, Jin Geyoung;Hong, Yeong Ho;Lim, Jeong Mook
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.11a
    • /
    • pp.69-70
    • /
    • 2003
  • According to topographical methods, the chicken spermatogonia was located in basal membrane of seminiferous tubules. It has large nuclei and mitochondria and proliferated with cellular bridges. Immunohistochemistry data showed that anti-SSEA-1 antibody specifically reacted with $\textrm{A}_{pr}$ and $\textrm{A}_{al}$ type spermatogonia. Lectin, STA and integrin-6, -1 were also specific to $\textrm{A}_{s}$ type spermatogonia.

  • PDF

Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis

  • Li, Zhen;Lu, Jieli;Sun, Xiaowei;Pang, Quanhai;Zhao, Yiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1702-1709
    • /
    • 2016
  • The reproductive function of G-protein subunit Galphaq (GNAQ), a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR). The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01) and testis (p<0.05). Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation.