• 제목/요약/키워드: Sperm Nucleus

검색결과 110건 처리시간 0.023초

미세술기를 이용한 정계정맥류절제술이 정자 핵 내 DNA Integrity에 미치는 효과 (Effect of Microsurgical Varicocelectomy on Human Sperm Nucleus DNA Integrity)

  • 김기영;이재석;지희준;김종현
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권3호
    • /
    • pp.245-251
    • /
    • 2010
  • 목 적: 인간 정자 핵 내의 DNA integrity는 배아의 발달 및 임신 유지에 중요한 역할을 하여 DNA integrity가 손상된 경우 불임과 유산의 원인이 된다고 하며, 정계정맥류는 DNA 손상을 일으키는 대표적인 원인 중 하나이다. 본 연구에서는 미세술기를 이용한 정계정맥류절제술로 정계정맥류를 교정을 하였을 때 정자 핵 내 DNA integrity가 어떠한 영향을 받는지에 대하여 알아보았다. 연구방법: 2006년 4월부터 2007년 4월까지 불임을 주소로 미세술기를 이용한 정계정맥류절제술을 받았던 18명의 환자에서 수술 전 후에 정액검사의 다른 지표들과 함께 정자 핵 내 DNA integrity가 어떻게 변화하였는지 조사하였다. 정자 핵 내 DNA integrity를 측정하는 방법으로 comet assay를 시행하였고, comet assay를 통한 DNA 손상 정도는 DNA fragmentation index (DFI)로 나타내었다. 결 과: 수술 후 4개월에 모든 환자에서 재발의 소견은 보이지 않았으며, DNA 손상 정도를 나타내는 평균 DFI는 수술 전에 19.3%, 수술 후에 13.7%로 유의한 변화를 보였다. 수술 전 DFI가 10 이상으로 비정상인 14명의 환자들 중 12명 (85%)에서 개선 소견을 보였으나, 수술 전 DFI가 10 미만인 정상 환자 4명에서는 1명 (25%)만이 개선 소견을 보였다. 수술 후 정자의 밀도, 운동성, 생존성에서 호전 양상을 보였으나 유의한 차이는 없었다. 결 론: 미세술기를 이용한 정계정맥류절제술을 통한 수술적 교정은 정액검사상의 다른 지표의 개선 뿐 아니라, 정자 핵 내 DNA 손상을 감소시킬 수 있다. 이상에서 정계정맥류의 수술적 교정으로 정자 핵 내 DNA integrity의 개선을 기대할 수 있으며, 이는 보다 양호한 정자를 많이 얻을 수 있어 자연임신이나 보조 생식술의 성공 가능성을 높일 수 있다는 점을 제시한다.

Germ Cell Development During Spermatogenesis and Taxonomic Values in Mature sperm Morphology in Male Argopecten irradians irradians (Pteriomorphia: Pectinidae) in Southern Korea

  • Kim, Jin-Hee;Chung, Jae-Seung;Park, Young-Je
    • 한국패류학회지
    • /
    • 제28권1호
    • /
    • pp.55-64
    • /
    • 2012
  • Ultrastructural studies of germ cell development during spermatogenesis and taxonomic values in mature sperm morphology of Argopecten irradians irradians were investigated by transmission electron microscopic observations. In the early stage of spermatid during spermiogenesis, a few granules and proacrosomal granules are formed by the Golgi complex. In the late stage of spermatid during spermiogenesis, a proacrosomal vesicle becomes an acrosomal vesicle in the acrosome through spermiogenesis. The sperm is approximately $ 45-48{\mu}m$ in length including a jar-shaped sperm nucleus (about $1.45{\mu}m$ long), an acrosome (about $0.34{\mu}m$ long) and tail flagellum. The axoneme of the sperm tail shows a 9+2 structure. As one of common characteristics of mature sperm morphologies in Pectinidae species in subclass Pteriomorphia, mature spermatozoon consists of the cone-shaped acrosomal vesicle and subacrosomal material on the invaginated jar-shaped nucleus. The acrosomal vesicle of this species is composed of electron high dense opaque part (material) from the base to the tip, as have seen in the species in the subclass Pteriomorphia. Exceptionally, five mitochondria are found in the sperm midpiece of this species, unlike four in most species of Pectinidae in subclass Pteriomorphia. However, the acrosomal vesicle of spermatozoa of A. irradians irradians resemble to those of other investigated Pectinidae species in subclass Pteriomorphia. Therefore, we can use sperm morphology as a tool in the resolution of taxonomic relationships within the Pectinidae species. These morphological charateristics of acrosomal vesicle belong to the family Pectinidae in the subclass Pteriomorphia.

Spermatid Differentiation and Sperm Ultrastructure of the Granular Ark, Tegillarca granosa (Bivalvia: Arcidae)

  • Lee, Jung-Sick;Park, Jung-Jun;Shin, Yun-Kyung;Jin, Young-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제10권3호
    • /
    • pp.143-149
    • /
    • 2007
  • This study describes spermatogenesis and sperm ultrastructure of the granular ark, Tegillarca granosa using light and electron microscopy. In the active spermatogenic season, the testis comprises many spermatogenic follicles that contain germ cells in different developmental stages. Primary spermatocytes in the pachytene stage are characterized by synaptonemal complexes. The early spermatids are characterized by the appearance of several Golgi bodies, increased karyoplasmic electron density, and tubular mitochondria. The mass of proacrosomal granules consists of numerous heterogeneous granules with high electron density that are about 20 nm in diameter. From the midstage of spermiogenesis, the well-developed mitochondria in the cytoplasm aggregate posterior to the nucleus and surround the proximal and distal centrioles. The proacrosomal granules condense and form a single acrosome with a thin envelope. During late spermiogenesis, the acrosome begins to elongate becoming conical. The sperm is approximately $35.0{\mu}m$ long and consists of a head, midpiece, and tail. The head comprises a round nucleus and a conical acrosome. A micro fibrous axial rod is observed between the nucleus and acrosome. The midpiece has a calyx-like structure with five mitochondria, and the tail, which has the typical "9+2" microtubular system, originates from the distal centriole.

Spermatid Differentiations During Spermiogenesis and Mature Sperm Ultrastructure in Male Crassostrea nipponica (Seki, 1934, Pteroirmorphia: Ostreidae)

  • Kim, Jin-Hee;Chung, Ee-Yung;Lee, Ki-Young;Choi, Moon-Sul;Seo, Won-Jae;Kim, Sung-Han
    • 한국패류학회지
    • /
    • 제26권4호
    • /
    • pp.311-316
    • /
    • 2010
  • Spermatid differentiations during spermiogenesis and mature sperm ultrastructure in male Crassostrea nipponica were investigated by transmission electron microscope observations. The morphology of the spermatozoon of this species has a primitive type and is similar to those of other bivalves. Mature spermatozoa consist of broad, cap-shaped acrosomal vesicle and an axial rod in subacrosomal materials on an oval nucleus showing deeply invaginated anteriorly, two triplet substructure centrioles surrounded by four spherical mitochondria, and satelite fibres, which appear near the distal centriole. The acrosomal vesicle of spermatozoa of C. nipponica resemble to those of other investigated ostreids. Especially, two transverse bands (stripes) appear at the anterior region of the acrosomal vesicle, unlikely 2-3 transverse bands (stripes) in C. gigas. It is assumed that differences in this acrosomal substructure are associated with the inability of fertilization between the genus Crassostrea and other genus species in Ostreidae. Therefore, we can use sperm morphology in the resolution of taxonomic relationships within the Ostreidea. The sperm is approximately $48-50{\mu}m$ in length including an oval sperm nucleus (about $1.0{\mu}m$ in length and $1.41{\mu}m$ in width), an acrosome (about $0.48{\mu}m$ in length and 0.30 in width) and tail flagellum ($46-48{\mu}m$). The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9 + 2 structure. These morphological charateristics of acrosomal vesicle belong to the family Ostreidae in the subclass Pteriomorphia.

Morphology and Taxonomic Values of the Sperm in Male Chlamys (Swiftopecten) swiftii (Pteriomorphia: Pectinidae) in Western Korea

  • Jun, Je-Cheon;Kim, Jin Hee;Park, Young Jae;Kang, Hee Woong;Chung, Jae Seung;Chung, Ee-Yung
    • 한국패류학회지
    • /
    • 제28권2호
    • /
    • pp.165-174
    • /
    • 2012
  • The morphology and taxonomic values of the sperm in male Chlamys (Swiftopecten) swiftii were investigated by transmission electron microscope observations. The morphologies and ultrastructures of the sperm nucleus and the acrosome of this species are the vase type and long cone shape, respectively. Spermatozoa are approximately $45-50{\mu}m$ long including a sperm nucleus (approximately $2.60{\mu}m$ long), an acrosome (about $0.63{\mu}m$ long), and a tail flagellum (approximately $44-47{\mu}m$ in long). The axoneme of the sperm tail shows a 9+2 structure. In this study, the right and left basal rings in the acrosomal vesicle of this species show electron opaque part (region), and also the anterior apex part of the acrosomal vesicle shows electron opaque part (region). These characteristics of the acrosomal vesicle were found in Pectinidae and other several families in subclass Pteriomorphia. The number of mitochondria in the midpiece of the sperm of this species are four, as one of common characteristics appear in most species in Pectinidae in subclass Pteriomorphia. In addition, the satellite fibres are found near the distal centriole of this species, as have been reported in other species of Pectinidae in subclass Pteriomorphia. Accordingly, structutral characteristics which are found in the acrosomal vesicle, four mitochondria in the sperm midpiece and the appearance of the satellite fibers near the distal centriole of C. (S.) swiftii in Pectinidae (subclass Pteriomorphia), can be employed for phylogenetic and taxonomic analyses as taxonomic key or a significant tool.

Spermatogenesis and Reproductive Cycle in Male Spisula sachalinensis (Bivalvia: Mactridae) of Korea

  • Lee, Ki-Yong;Chung, Ee-Yung;Lee, Jeong-Yong
    • 한국패류학회지
    • /
    • 제24권1호
    • /
    • pp.1-10
    • /
    • 2008
  • Spermatogenesis and the reproductive cycle in male Spisula sachalinensis were investigated by cytological and histological observations. The morphology of the spermatozoon has a primitive type and is similar to those of other bivalves in that it contains a short midpiece with four mitochondria surrounding the centrioles. But spermatozoon of this species has not axial rod and satellite body in the midpiece. The morphologies of the sperm nucleus type and the acrosome shape of this species have a globe-shape type and modified cap-like shape, respectively. The spermatozoon is approximately $40-45{\mu}m$ in length including the sperm nucleus length (about $1.35{\mu}m$), acrosome length (about $1.50{\mu}m$) and tail flagellum. The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9+2 structure. The spawning period of these species lasts from June to July, and the main spawning occurs in July when seawater temperatures are greater than $20^{\circ}C$. The male reproductive cycle of this species can be categorized into five successive stages: early active stage (October to January), late active stage (February to April), ripe stage (April to June), partially spawned stage (June and July), and spent/inactive stage (August to September).

  • PDF

Spermatogenesis and Sexual Maturation in Male Mactra chinensis (Bivalvia: Mactridae) of Korea

  • Chung, Ee-Yung;Kim, Eun-Jong;Park, Gab-Man
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.227-234
    • /
    • 2007
  • Spermatogenesis, the reproductive cycle, and the size at first sexual maturity in male Mactra chinensis were investigated by cytological and histological observations. The spermatozoon exhibits a primitive type morphology and is similar to those of other bivalves in that it contains a short midpiece with four mitochondria surrounding the centrioles. The morphologies of the sperm nucleus type and the acrosome shape of this species are cylindrical and modified cap-like, respectively. The spermatozoon is approximately $40-45\;{\mu}m$ in length including the sperm nucleus (about $1.46\;{\mu}m$), acrosome (about $1.20\;{\mu}m$) and tail flagellum. The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9+2 structure. The spawning period of this species lasts from June to September, and the main spawning occurs in July and August, when the seawater temperature is greater than $20^{\circ}C$. The percentage of individual male clams at first sexual maturity was 56.5% for those whose shell lengths were 35.1-40.0 mm, and 100% for over 45.1 mm. Accordingly, harvesting clams <35.1 mm in shell length could potentially cause a drastic reduction in recruitment, and a measure indicating a prohibitory fishing size should be taken for adequate fisheries management.

기수재첩 (Corbicula japonica)의 정자형성과정과 정자 미세구조 (Spermatogenesis and Sperm Ultrastructure of the Marsh Clam (Corbicula japonica) (Bivalvia: Veneridae))

  • 이정용;김완기;이채성;장영진
    • 한국수산과학회지
    • /
    • 제37권4호
    • /
    • pp.281-286
    • /
    • 2004
  • Spermatogenesis and sperm ultrastructure of the marsh clam (Corbicula japonica) were investigated by electron microscopic observations. Testis of the marsh clam consists of numerous spermatogenic follicle containing germ cells in the different developmental stages. Spermatogonia are located nearest the outer wall of the follicle, while spermtocytes and spermatids are positioned nearer to the lumen. Spematogonia are oval-shaped and about $5{\mu}m$ In diameter. Spermatogonia develop into spermatocyte, spermatid and spermatozoon. In the spermatid to about $2{\mu}m$ in diameter, cytoplasm decreases and mitochondria move to the base of the nucleus and fuse into several spheres, the centrioles become orthogonally oriented, a flagellum appears, and an acrosomal vesicle forms. The mature sperm has primitive type, consisting of a head, a midpiece and a tail. The sperm was arrow-shaped, and its head is about $8{\mu}m$ long and comprised of a long nucleus and an acrosome. The four mitochondria encircled the centrosome in midpiece. The flagellum had the classical 9+2 axoneme structure, and axonemal lateral fins in the tail were observed.

Germ Cell Differentiations During Spermatogenensis and Taxonomic Values of Mature Sperm Morphology of Pinctada martensii (Bivalvia, Pteriomorphia, Pteriidae)

  • Kim, Jin-Hee;Kim, Sung-Han;Lee, Ki-Young
    • 한국패류학회지
    • /
    • 제27권3호
    • /
    • pp.273-282
    • /
    • 2011
  • The ultrastructural characteristics of germ cells during spermatogenesis and mature sperm morphology in male Pinctada martensii were investigated by transmission electron microscope observation. The morphologies of the sperm nucleus and the acrosome of this species are the oval shape and cone shape, respectively. Spermatozoa are approximately $47-50{\mu}m$ in length including a sperm nucleus (about $1.24{\mu}m$ in length), an acrosome (about $0.60{\mu}m$ in length), and tail flagellum (about $45-47{\mu}m$). The axoneme of the sperm tail shows a 9+2 structure. In P. martensii in Pteriidae, a special substructure showing a thick and wide triangular shape which is composed of electron-dense opaque material (occupied about 50% of all, the upper part of the acrosomal vesicle), appeared in the upper region (part) of the acrosomal vesicle, while the lower region (part) of the acrosomal vesicle is composed of electron-lucent material. Thus, this special structure, which exist in the upper part of the acrosomal vesicle in P. martensii, is somewhat different from those of other subacrosomal vesicle in other families in subacrosomal vesicles. Therefore, we assume that the existence of a special substructure showing a thick and wide triangular shape in the acrosomal vesicle of the spermatozoon can be used as a key characteristic for identification of P. martensii or other species in Pteriidae in subclass Pteriomorphia. The number of mitochondria in the midpiece of the sperm of this species are five (exceptionally sometimes four), as one of common characteristics appear the same number of mitochondria in the same families of superfamilyies. This species in Pteriidae does not contain the axial rod and satellite fibres which appear in the species in Ostreidae in subclass Pteriomorphia. These characteristics can be used for the taxonomic analysis of the family or superfamily levels as a systematic key or tools.

Germ Cell Development During Spermatogenesis and Some Characteristics of Mature Sperm Morphology in Male Scapharca subcrenata (Pteriomorphia: Arcidae) in Western Korea

  • Chung, Ee-Yung;Kim, Jin-Hee;Kim, Sung-Han;Seo, Won-Jae
    • 한국패류학회지
    • /
    • 제27권2호
    • /
    • pp.121-129
    • /
    • 2011
  • The ultrastructural characteristics of germ cell development during spermatogenesis and mature sperm morphology of in male Scapharca subcrenata were investigated by transmission electron microscope observation. Spermatogonia are located nearest the outer wall of the acinus, while spermatocytes and spermatids are positioned near the accessory cells. The accessory cells, which is in close contact with developing germ cells, contained a large quantity of glycogen particles and lipid droplets in the cytoplasm. Therefore, it is assumed that they are involved in supplying of the nutrients for germ cell development. The morphologies of the sperm nucleus and the acrosome of this species are the oval shape and cone shape, respectively. Spermatozoa are approximately 45-$50{\mu}m$ in length including a sperm nucleus (about $1.30{\mu}m$ in length), an acrosome (about $0.59{\mu}m$ in length), and tail flagellum (about 43-$47{\mu}m$). The axoneme of the sperm tail shows a 9 + 2 structure. As some characteristics of the acrosomal vesicle structures, the right and left basal rings show electron opaque part (region), and also the anterior apex part of the acrosomal vesicle shows electron opaque part (region). These characteristics of the acrosomal vesicle were found in Acinidae and other several families in subclass Pteriomorphia. These common characteristics of the acrosomal vesicle in subclass Pteriomorphia can be used for phylogenetic and taxonomic analysis as a taxonomic key or a significant tool. The number of mitochondria in the midpiece of the sperm of this species are five, as one of common characteristics appear in most species in Arcidae and other families in subclass Pteriomorphia. The acrosomal vesicles of Arcidae species do not contain the axial rod and several transverse bands in acrosome, unlkely as seen in Ostreidae species in subclass Pteriomorphia, These characteristics can be used for the taxonomic analysis of the family or superfamily levels as a systematic key or tools.