• Title/Summary/Keyword: Sperm DNA fragmentation

Search Result 52, Processing Time 0.034 seconds

Effects of Reactive Oxygen Species on DNA Stability in Humnn Spermatozoa

  • Kang, Hee-Gyoo;Kim, Tai-Jeon;Bae, Hyung-Joon;Moon, Hi-Joo;Kim, Myo-Kyung;Kim, Dong-Hoon;Sungwon-Han;Lee, Ho-Joon;Yang, Hye-Young
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.181-190
    • /
    • 2001
  • This study was designed to investigate the effects of reactive oxygen species (ROS) on DNA stability in human spermatozoa. To verify human spermatozoa were incubated with xanthine-xanthine oxidase (X 100$\mu$M-XO 50 mlU ~ 400 mIU), $H_2O_2$ (125 $\mu$M ~ 1 mM), sodium nitroprusside (SNP 0.1 $\mu$M ~ 100 $\mu$M) or lymphocyte. Otherwise, spermatozoa were incubated under low $O_2$ (5%) condition. Damage of sperm DNA was analyzed by single cell electrophoresis (Comet assay) and flow cytometry after acridine orange staining. In the presence of ROS, there was increase in DNA damage. The rate of DNA single strand breakage (9.0$\pm$1.0% ~ 46.0$\pm$4.6%) and DNA fragmentation (7.51$\pm$1.0% ~ 29.5$\pm$4.6%) were similar regardless of the kinds of ROS and exposure time. DNA damage in the lower $O_2$ condition (5%) was lower than ambient $O_2$ condition (20%). Taken together, it suggested that sperm DNA might be damaged by ROS. In the presence of ROS, increase in DNA damage and chromatin instability was obvious in spite of short exposure. Although present study reconfirmed that sperm incubation in the low concentration of ROS have the benefit m the induction of capacitation and Ah, the increase in DNA damage by ROS and possible genetic problem should be considered before the human trials.

  • PDF

Dog Sperm Cryopreservation Using Glucose in Glycerol-free TRIS: Glucose Concentration, Exposure Time (Glycerol-free TRIS 배지내 glucose를 이용한 개 정자 동결: 포도당 농도, 노출시간)

  • Yu, Il-Jeoung
    • Journal of Veterinary Clinics
    • /
    • v.30 no.6
    • /
    • pp.442-448
    • /
    • 2013
  • The aim of the present study was to develop glycerol-free TRIS extender using glucose for dog sperm cryopreservation. We determined the appropriate concentration of glucose in glycerol-free TRIS and the exposure time in glycerol-free TRIS containing 0.3 M glucose at $4^{\circ}C$. Ejaculates of six dog sperm were cooled in glycerol-free TRIS through $4^{\circ}C$ for 100 min, cooled at $4^{\circ}C$ in TRIS with different glucose concentrations 0 M, 0.04 M, 0.1 M, 0.2 M and 0.3 M, respectively for 30 min followed by cryopreservation. After thawing at $37^{\circ}C$ for 25 sec, membrane and acrosome integrities of dog sperm were evaluated. In addition, the effect of exposure time (10, 30, 50 and 70 min) of sperm to glycerol-free TRIS containing 0.3 M glucose at $4^{\circ}C$ on progressive motility, viability, and DNA integrity following sperm cryopreservation was studied. Membrane integrity and acrosome integrity were assessed by 6-carboxyfluoresceindiacetate (6-CFDA)/propidium iodide (PI) fluorescent staining and Pisum sativum agglutinin conjugated to fluorescein isothiocyanate, respectively. DNA integrity was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling, using flow cytometry. Sperm frozen in glycerol-free TRIS supplemented with 0.2 M or 0.3 M glucose have an intact plasma membrane (CFDA+/PI-) after cryopreservation than sperm frozen in the extenders with lower glucose concentrations (p<0.05). Acrosome integrity was significantly higher in the 0.3 M group than less than 0.1 M groups (p<0.05). The sperm DNA fragmentation index did not differ according to exposure time, although progressive motility was significantly higher in the 50 min exposure group than the other groups (p<0.05). These results indicate that cryopreservation of dog sperm is feasible and yields more motile sperm following freezing and thawing in glycerol-free TRIS containing 0.3 M glucose with the exposure time for 50 min at $4^{\circ}C$.

Comparison of the effects of coenzyme Q10 and Centrum multivitamins on semen parameters, oxidative stress markers, and sperm DNA fragmentation in infertile men with idiopathic oligoasthenospermia

  • Alahmar, Ahmed T;Singh, Rajender
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.1
    • /
    • pp.49-56
    • /
    • 2022
  • Objective: Oxidative stress and sperm DNA fragmentation (SDF) have been linked to idiopathic male infertility (IMI). Various antioxidants have been tried to improve semen parameters and fertility potential in IMI patients, but with inconsistent results. The study aimed to compare the effects of coenzyme Q10 (CoQ10) and Centrum multivitamins on semen parameters, seminal antioxidant capacity, and SDF in infertile men with idiopathic oligoasthenospermia (OA). Methods: This prospective controlled clinical study involved 130 patients with idiopathic OA and 58 fertile controls. The patients were divided randomly into two groups: the first group received CoQ10 (200 mg/day orally) and the second group received Centrum multivitamins (1 tablet/day) for 3 months. Semen parameters, CoQ10 levels, reactive oxygen species (ROS), total antioxidant capacity (TAC), catalase, SDF, and serum hormone levels (follicle-stimulating hormone, luteinizing hormone, testosterone, and prolactin) were compared at baseline and after 3 months. Results: Both CoQ10 and Centrum improved sperm concentration and motility, but the improvement was greater with Centrum therapy (p<0.05). Similarly, both therapies improved antioxidant capacity, but TAC and catalase improvement was greater (p<0.01 and p<0.001 respectively) with CoQ10, whereas ROS (p<0.01) and SDF (p<0.001) improvements were greater with Centrum administration. Centrum therapy was associated with reduced serum testosterone (p<0.05). Conclusion: In conclusion, both CoQ10 and Centrum were effective in improving semen parameters, antioxidant capacity, and SDF, but the improvement was greater with Centrum than with CoQ10. Therefore, Centrum-as a source of combined antioxidants-may provide more effective results than individual antioxidants such as CoQ10 in the treatment of infertile men with idiopathic OA.

Effect of Paternal DNA Damage on Paternal DNA Degradation and Early Embryonic Development in Mouse Embryo: Supporting Evidence by GammaH2AX Expression (마우스 수정란에 있어서 부계 DNA 손상이 부계 DNA 퇴화 및 초기 배발달에 미치는 영향)

  • Kim, Chang Jin;Lee, Kyung-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • This study was investigated to test whether the zygote recognized the topoisomerase II beta (TOP2B) mediated DNA fragmentation in epididymal spermatozoa or the nuclease degradation in vas deferens spermatozoa by testing for the presence of gammaH2AX (γH2AX). The γH2AX is phosphorylation of histone protein H2AX on serine 139 occurs at sites flanking DNA double-stranded breaks (DSBs). The presence of γH2AX in the pronuclei of mouse zygotes which were injected with DNA broke epididymal spermatozoa was tested by immunohistochemistry at 5 and 9 h post fertilization, respectively. Paternal pronuclei that arose from epididymal spermatozoa treated with divalent cations did not stain for γH2AX at 5 h. On the other hand, in embryos injected with vas deferences spermatozoa that had been treated with divalent cations, γH2AX was only present in paternal pronuclei, and not the maternal pronuclei at 5 h. Interestingly, both pronuclei stained positively for γH2AX for all treatments and controls at 9 h after sperm injection. In conclusion, the embryos recognize DNA that is damaged by nuclease, but not by TOP2B because H2AX in phosphorylated in paternal pronuclei resulting from spermatozoa treated with fragmented DNA from vas deferens spermatozoa treated with divalent cations, but not from epididymal spermatozoa treated the same way.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

Effect of green tea extract in extender of Simmental bull semen on pregnancy rate of recipients

  • Susilowati, Suherni;Sardjito, Trilas;Mustofa, Imam;Widodo, Oky Setio;Kurnijasanti, Rochmah
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • Objective: The aim of this study was to ascertain the effects of adding green tea extract (GTE) to skim milk-egg yolk (SM-EY) extender on both the quality of post-thawed bull semen and the pregnancy rates of the recipient cows. Methods: Twelve ejaculates from four Simmental bulls, aged 3 to 5 years and weighing 900 to 950 kg, were diluted SM-EY extender, added with 0, 0.05, 0.1, and 0.15 mg GTE/100 mL extender and then frozen. After four weeks storage in liquid nitrogen, the sperm were thawed and evaluated for viability, motility, intact plasma membrane (IPM), and DNA fragmentation. Meanwhile, the estrus cycles of 48 recipient cows were synchronized by intramuscular administration of a single injection of 5 mg prostaglandin F2α. Estrus cows were divided into four equal groups and inseminated artificially 18 to 20 h after the onset of estrus by using semen from each extender group. Pregnancy was diagnosed by measuring serum progesterone levels at 21 days, followed by transrectal palpation 90 days after insemination. Results: The findings revealed that adding 0.1 mg of GTE/100 mL extender produced the highest percentages of sperm viability (70.67%±1.75%), motility (69.17%±1.47%), and IPM (69.23%±1.21%) and the lowest percentage of DNA fragmentation (3.00%±0.50%). The pregnancy diagnosis revealed that all cows (36/36) inseminated using frozen semen in GTE addition extender were pregnant (pregnancy rate 100%), whereas the pregnancy rate of the control group was 83.33% (10/12). Conclusion: It may be concluded that 0.1 mg GTE/100 mL extender yields the best quality of spermatozoa and that all variants doses of GTE in extender produce a higher pregnancy rate among recipient cows.

Expression of Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors (TIMPs) in Frozen Sperm of Rabbit (동결융해 후 토끼 정자의 Matrix Metalloproteinases (MMPs)와 Their Tissue Inhibitors (TIMPs) 발현 양상)

  • Kim, Sang Hwan;Choi, Hwa Sik;Yoon, Jong Taek
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.247-252
    • /
    • 2019
  • We observed MMPs expression in all sperm groups, with pro-MMP showing lower expression than active MMPs. According to the results from each freezing extender, the sperm membrane integrity (HOST: Hypoosmotic Swelling Test) analysis in TCGGD (Tris 250 mM, Citric acid 88 mM, Glucose 47 mM, Glycerol 3%, Dimethylsulpoxide 3.5 M) is 59.8 ± 0.7, TCGSD (Tris 250 mM, Citric acid 88 mM, Glucose 47 mM, Sucrose 0.1 M, Dimethylsulpoxide 3.5 M) is 59.3 ± 0.5 were significantly higher (p < 0.05) among the experimental groups. And MMPs analysis result, we observed MMPs expression in all sperm groups, with pro-MMP showing lower expression than active MMPs. The expression of active MMP-2 was the highest in sperms frozen in TCGSD and TCGD (Tris 250 mM, Citric acid 88 mM, Glucose 47 mM, Dimethylsulpoxide 3.5 M), Meanwhile, sperms from the TCGGD and TCGED (Tris 250 mM, Citric acid 88 mM, Glucose 47 mM, Ethylene glycol 3%, Dimethylsulpoxide 3.5 M) group showed lower level of active MMP-2 expression. Together, these results indicate that adding glycerol or sucrose to the sperm freezing buffer would not only suppress MMPs expression but also minimize DNA fragmentation, providing a mean to improve the success rate in the in vitro manipulation of rabbit sperms. Therefore, these results suggest that TCGGD or TCGSD extender method for freezing-thawing of rabbit sperm increased the viability after thawing.

Cryopreservation with Trehalose Reduced Sperm Chromatin Damage in Miniature Pig

  • Park, Cheol-Ho;Kim, Sung-Won;Hwang, You-Jin;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.107-111
    • /
    • 2012
  • Miniature pig sperm cryopreservation is continually researched in biotechnology for breed conservation and reproduction. It is important to control the temperature at each stage of cryopreservation and cryoprotectant. It is also necessary to find the optimal cryoprotectant concentration and chemical elements of the extender. Recently, many studies have used various cryoprotectant materials, such as dimethyl sulphoxide (DMSO), ethylene glycol (EG), antifreeze protein (AFP), amides, and glycerol. Glycerol is a commonly used cryoprotectant. However, glycerol has critical cytotoxic properties, including osmotic pressure and it can cause irreversible damage to live cells. Therefore, We focused on membrane fluidity modifications can reduce cell damage from freezing and thawing procedures and evaluated on the positive effects of trehalose to the viability, chromatin integrity, and motility of boar sperm. Miniature pig sperm was separated from semen by washing with modified- Modena B (mMB) extender. After centrifugation, the pellet was diluted with the prepared first extender. This experiment was designed to compare the effects that sperm cryopreservation using two different extenders has on sperm chromatin. The control group used the glycerol only and it was compared with the glycerol and glycerol plus trehalose extender. Sperm viability and motility were evaluated using WST1 assays and computer-assisted semen assays (CASA). Chromatin structure was examined using acridine orange staining. For the motility descriptors, trehalose caused a significant (p<0.01) increase in total motility ($57.80{\pm}4.60%$ in glycerol vs. $75.50{\pm}6.14%$ in glycerol + trehalose) and progressive ($51.20{\pm}5.45%$ in glycerol vs. $70.74{\pm}8.06%$ in glycerol + trehalose). A significant (p<0.05) increase in VAP ($42.70{\pm}5.73{\mu}m/s$ vs. $59.65{\pm}9.47{\mu}m/s$), VSL ($23.06{\pm}3.27{\mu}m/s$ vs. $34.60{\pm}6.58{\mu}m/s$), VCL ($75.36{\pm}11.36{\mu}m/s$ vs. $99.55{\pm}12.91{\mu}m/s$), STR ($54.4{\pm}2.19%$ vs. $58.0{\pm}1.63%$), and LIN ($32.2{\pm}2.05%$ vs. $36.0{\pm}2.45%$) were also detected, respectively. The sperm DNA fragmentation index was 48.8% to glycerol only and 30.6% to glycerol plus trehalose. Trehalose added group showed higher percentages of sperm motility, stability of chromatin structure than glycerol only. In this study, we suggest that trehalose is effective in reducing freezing damage to miniature pig sperm and can reduce chromatin damage during cryopreservation.

Identification of heat shock protein70-2 and protamine-1 mRNA, proteins, and analyses of their association with fertility using frozen-thawed sperm in Madura bulls

  • Zulfi Nur Amrina Rosyada;Berlin Pandapotan Pardede;Ekayanti Mulyawati Kaiin;Ligaya I.T.A Tumbelaka;Dedy Duryadi Solihin;Bambang Purwantara;Mokhamad Fakhrul Ulum
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1796-1805
    • /
    • 2023
  • Objective: This study aims to identify heat shock protein70-2 (HSP70-2) and protamine-1 (PRM1) mRNA and protein in Madura bull sperm and demonstrate their relation as bull fertility biomarkers. Methods: The Madura bull fertility rates were grouped based on the percentage of first service conception rate (%FSCR) as high fertility (HF) (79.04%; n = 4), and low fertility (LF) (65.84%; n = 4). mRNA of HSP70-2 and PRM1 with peptidylprolyl isomerase A (PPIA) as a housekeeping gene were determined by quantitative real-time polymerase chain reaction, while enzyme-linked immunoassay was used to measure protein abundance. In the post-thawed semen samples, sperm motility, viability, acrosome integrity, and sperm DNA fragmentation index were analyzed. Data analysis was performed on the measured parameters of semen quality, relative mRNA expression, and protein abundance of HSP70-2 and PRM1, among the bulls with various fertility levels (HF and LF) in a one-way analysis of variance analysis. The Pearson correlation was used to analyze the relationship between semen quality, mRNA, proteins, and fertility rate. Results: Relative mRNA expression and protein abundance of HSP70-2 and PRM1 were detected and were found to be highly expressed in bulls with HF (p<0.05) and were associated with several parameters of semen quality. Conclusion: HSP70-2 and PRM1 mRNA and protein molecules have great potential to serve as molecular markers for determining bull fertility.

Coenzyme Q10, oxidative stress, and male infertility: A review

  • Alahmar, Ahmed T.;Calogero, Aldo E.;Singh, Rajender;Cannarella, Rossella;Sengupta, Pallav;Dutta, Sulagna
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.