• Title/Summary/Keyword: Spent fuel shipping cask

Search Result 27, Processing Time 0.026 seconds

Neutron Dose Rate Analysis of PWR Spent Fuel Transport Cask Using Monte Carlo Method

  • Do, Mahnsuck;Kim, Jong-Kyung;Yoon, Jeong-Hyoun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.847-852
    • /
    • 1995
  • A shielding analysis for KSC-7, the shipping cask for transporting the 7 PWR spent fuel assemblies, has been carried out. Radiation source term has been calculated on spent fuel with burnup of 50,000 MWD/MTU and 1.5 years cooling time by ORIGEN2 code. The shielding calculation for the cask has been made by using MCNP4A code with continuous cross section data library from ENDF/B-V. As a result of neutron dose rate analysis, another shielding calculational model on spent fuel shipping cask was provided which is using the Monte Carlo method.

  • PDF

A Study on the Side Drop Impact of a Nuclear Spent Fuel Shipping Cask (사용후 핵연료 수송용기의 수평낙하충격에 관한 연구)

  • Chung, Sung-Hwan;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.457-469
    • /
    • 1997
  • A nuclear spent fuel shipping cask is required by IAEA and domestic regulations to withstand a 9m free drop condition. In this paper, the structural analysis under the 9m side drop condition was performed to understand the dynamic impact behavior and to evaluate the safety of the cask for 7 PWR nuclear spent fuel assemblies. The analysis result was compared with the measured value of the 9m side drop test for the 1/3 scaled-down model and the accuracy of the 3D analysis was confirmed. Analysis in accordance with the diameter of impact limiters for the proto-type cask were performed. Through the analysis, the impact behaviors due to the side drop and the effects dependent on the diameter of impact limiters were grasped. Maximum stress intensities on each part of the cask were respectively calculated by using the stress evaluation program and the structural safety of the cask was finally evaluated in accordance with the regulations.

Radiation Shield Analysis for Spent Fuel Shipping Cask (핵연료 수송용기의 방사선 차폐해석)

  • Cho, Kun-Woo;Kim, Hee-Won;Kwon, Seog-Kun;Kwak, Eun-Ho;Moon, Philip-S.
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.148-154
    • /
    • 1985
  • Radiation shield design for a shipping cask, KSC-1, was evaluated to verify that the cask can be used in the transportation of a spent fuel assembly discharged from KNU 5 & 6. Radiation source term of the spent fuel assembly was calculated with the computer program ORIGEN-79, QAD-CG, ANISN-KA and DOT 3.5 codes Were used in the shielding calculations and the nuclear cross section data needed was extracted from the DLC-23/CASK library. It is concluded that KSC-1 shipping cask satisfies the requirements specified in the relevant regulations under normal conditions of transport and under accident conditions in transport.

  • PDF

Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1 (고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.196-203
    • /
    • 1982
  • To transport the spent fuel assemblies of Korea Nuclear Unit 1, which is a Westinghouse type two loop pressurized water reactor, it has been found that steel is the most appropriate material for the design of a shipping cask in comparison with lead and depleted uranium. The proposed shipping cask will transport nine fuel assemblies at the same time and is well within the weight limit of transportation by unrestricted rail car. The cask requires 33cm thick steel shield and 27cm thick water region to satisfy the 3 feet apart dose rate limit set forth in 10 CFR 71, and 1.27cm thick steel boron fuel basket to hold the fuel elements inside the cask and control the effective multiplication factor. As a safety analysis, the fuel cladding and centerline temperatures were calculated under the accident condition of complete loss of water coolant, and it was found that the temperature was much lower than the limit of the melting point. k$_{eff}$ was calculated with fresh fuel assemblies, which was found to be well lower than 0.95. For shielding computation, the multipurpose Monte Carlo code MORSE-CG and one dimensional discrete ordinates transport code ANISN were used, and the Monte Carlo codes KENO and MORSE-CG were used for criticality calculation. The radiation source terms were calculated using ORIGEN-79.9.

  • PDF

Study on the Impact-proof Internal Structure Design of a Spent Nuclear Fuel Transport Cask (내충격성을 고려한 사용후연료 수송용기 내부구조물의 설계 연구)

  • Shin, Tae-Myung;Kim, Kap-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.370-377
    • /
    • 2009
  • A simple preliminary analysis is often useful to check a validity of design alternatives before the detailed analysis phase in the viewpoint of efficiency. This paper describes a preliminary analysis procedure for the selection among basket design candidates for the spent fuel shipping cask of Korean standard nuclear power plant. As the cask should maintain the structural integrity in hypothetical accident condition, the case of 9 m drop is significantly considered as the worst scenario among the accident conditions in structural design viewpoint in this paper. As basket design options, totally four different types are considered and analyzed in the point of structural integrity at drop impact and weldability for fabrication. As a result, an insertion round plate type with densely spaced supports turns out to be the best in both of the viewpoints, though the weld plate type shows a bit more design margin.

Criticality Analyses of Spent Fuel Shipping Cask (핵연료(核燃料) 수송용기(輸送容器)에 대(對)한 핵림계분석(核臨界分析))

  • Min, Duck-Kee;Ro, Seung-Gy;Kwack, Eun-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.97-102
    • /
    • 1984
  • Criticality analyses of the KSC-1(Korean Shipping Cask-1) spent fuel shipping cask have been performed with the help of KENO-IV Monte Carlo computer code and 19-group CSLIB 19 cross section set which was generated from AMPX modular system. The analyses followed a benchmark calculation which has been made regard to the B & W CX-10 criticality facility in order to validate the Monte Carlo code cross section set described above. The KSC-1 shipping cask seems to be safe in the criticality point of view for the transport of one PWR spent fuel assembly under the normal conditions as well as the hypothetical accident conditions.

  • PDF