• Title/Summary/Keyword: Spent fuel Assembly

Search Result 91, Processing Time 0.023 seconds

PROSPECTIVE ON DEVELOPMENT OF NUCLEAR POWER AND THE ASSOCIATED FUEL CYCLE IN CHINA

  • Gu Zhongmao;Liu Changxin;Fu Manchang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.156-164
    • /
    • 2005
  • The challenges China is facing in energy security are briefly discussed. Then, the development of nuclear power in China in the first half of 21 st century is envisioned, and it is expected that Generation-3 PWR nuclear power plants (NPPs) would be the leading units of nuclear power in the coming $30\~40$ years. As part of the nuclear power program, the R&D work on nuclear fuel cycle is generally proposed.

  • PDF

Transmutation of Am-241, 243 and Cm-244 in a Conventional Pressurized Water Reactor

  • Koh, Duck-Joon;Lee, Myung-Chan;Jeong, Woo-Tae;Boris P. Kochurov
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.423-428
    • /
    • 1996
  • The feasibility study on burning Am-241, 243 and Cm-244 nuclides in a conventional PWR (Pressurized Water Reactor) was carried out by using the TRIFON code that was developed by the Institute of Theoretical and Experimental Physics in Russia in 1992. TRIFON code uses updated ABBN Russian nuclear cross section library. The reference reactor is the Korea nuclear power plant unit 8 (YGN 2). The burning effect of Am-241, 243 and Cm-244 nuclides was studied with UO$_2$(3.5 w/o)fuel assembly and MOX (4.44 w/o) fuel assembly. The loaded mass ratio of Am-241, 243 and Cm-244 nuclides was obtained from the mass ratio of Am-241, 243 and Cm-244 nuclides in 10 year cooling spent fuel with average discharge burnup of 33 GWD/MTU. The effective transmutation rates of Am-241, 243 and Cm-244 nuclides in UO$_2$ fuel assembly were found to be higher than those in MOX fuel assembly. The result from TRIFON code was compared to that from CASMO-3/NEM-3D code system. For more reliable calculation of transmutation for MA(Minor Actinides) more sophisticated decay chain scheme of MA should be investigated and nuclear cross section library of MA should be considerably improved.

  • PDF

Rolling Test Simulation of Sea Transport of Spent Nuclear Fuel Under Normal Transport Conditions

  • JaeHoon Lim;Woo-seok Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.439-450
    • /
    • 2023
  • In this study, the impact load resulting from collision with the fuel rods of surrogate spent nuclear fuel (SNF) assemblies was measured during a rolling test based on an analysis of the data from surrogate SNF-loaded sea transportation tests. Unfortunately, during the sea transportation tests, excessive rolling motion occurred on the ship during the test, causing the assemblies to slip and collide with the canister. Hence, we designed and conducted a separate test to simulate rolling in sea transportation to determine whether such impact loads can occur under normal conditions of SNF transport, with the test conditions for the fuel assembly to slide within the basket experimentally determined. Rolling tests were conducted while varying the rolling angle and frequency to determine the angles and frequencies at which the assemblies experienced slippage. The test results show that slippage of SNF assemblies can occur at angles of approximately 14° or greater because of rolling motion, which can generate impact loads. However, this result exceeds the conditions under which a vessel can depart for coastal navigation, thus deviating from the normal conditions required for SNF transport. Consequently, it is not necessary to consider such loads when evaluating the integrity of SNFs under normal transportation conditions.

Review of Seismic Analysis Method for Free Standing High Density Spent Fuel Racks of PWR Plant (가압경수형 발전소 자립형 고밀도 핵연료 저장랙의 지진해석 방법에 대한 검토)

  • 신태명;김범식;손갑헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.183-190
    • /
    • 1994
  • The paper provides a review of the analysis methods currently being used to perform seismic analysis of free standing high density spent fuel storage racks for PWR. On the basis of the analysis techniques obtained by KAERI from the design experience of Yonggwang unit 3&4 and Ulchin unit 3&4, the analysis procedure and modeling methods are discussed. The analysis of free standing fuel racks requires consideration of complex phenomena such as hydrodynamic coupling, impact through gap between fuel assembly and poison box and racks, frictional effect, rigid body sliding and tipping and etc. The present modeling of these factors is reviewed in comparison with the recommendation of regulatory group. Further improvement of analysis method and the current issues for the development are discussed.

  • PDF

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

Reference Spent Nuclear Fuel for Pyroprocessing Facility Design (파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정)

  • Cho, Dong-Keun;Yoon, Seok-Kyun;Choi, Heui-Joo;Choi, Jong-Won;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • An estimation has been made for inventories and characteristics of spent nuclear fuel(SNF) to be generated from existing and planned nuclear power plants based on the 3rd Basic Plan for Electric Power Demand and Supply. The characteristics under consideration in this study are dimensions, a fuel rod array, a weight, $^{235}U$ enrichment, and the discharge burnup in terms of fuel assembly. These are essentially needed for designing a pyroprocessing facility. It is appeared that the anticipated quantity by the end of 2077 is about 23,000 tU for PWR spent nuclear fuel. It is revealed that the proportion of SNF with the initial $^{235}U$ enrichment below 4.5 weight percent(wt.%) is approximately 95 % in total. For SNF with 16$\times$16 fuel rod array the proportion is expected approximately 74% in total. It appears that the average burnup of SNF will be 55 GWd/tU after the medium and/or latter part of 2010s while the average burnup is 45 GWd/tU at present. Finally, a requirement in terms of reference SNF for designing the pyroprocessing facility has been derived from the above-mentioned results. The anticipated SNF seems to be 16$\times$16 Korean Standard Fuel Assembly with a cross section of 21.4 cm$\times$21.4 cm, a length of 453 cm, a mass of 672 kg, the initial $^{235}U$ enrichment of 4.5 wt.%, and the discharge burnup of 55 GWd/tU.

  • PDF

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.

Three-Dimensional Seismic Analysis for Spent Fuel Storage Rack

  • Lee, Gyu-Mahn;Kim, Kang-Soo;Park, Keun-Bae;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-98
    • /
    • 1998
  • Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack(SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSYS code. The 3D- Model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall, This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. AS a result of the adquacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input.

  • PDF