• Title/Summary/Keyword: Spent catalyst

Search Result 88, Processing Time 0.024 seconds

Recovery and Separation of Nickel from the Spent Ni-Cd Batteries (폐 Ni-Cd전지로부터 Ni의 분리 및 회수에 관한 연구)

  • 김종화;남기열
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2000
  • Consumption of nickel is continuously increasing and the wastes of secondary battery, ferrite and catalyst containing Ni are also generated periodically. Among those wastes, the aim of this research is the recovery of nickel from used Ni-Cd recharge battery. Battery consisted of Ni 24 wt%, Fe 30 wt% and Cd 18.5 wt%. Metal was recovered by solvent extraction after leaching. Cadmium was leached completely in 1N-HCl and Ni was recovered above 70%. 30 vol% MSP-8 separated Cd and Ni completely from acidic leaching solution. In addition $NH_4NO_3$ as one of ammonium salt type leachants showed an excellent leaching selectivity to Ni and Cd. Ni in leached solution was recovered completely by LIX-extractant and more than 70% of Cd in raffinate was by D2EHPA.

  • PDF

Synthesis of Pyridine and β-Picoline from Acrolein and Ammonia on Pd/SiO2-Al2O3 Catalysts (Pd/SiO2-Al2O3 촉매상에서 아크로레인과 암모니아로 부터 피리딘과 β-피콜린의 합성)

  • Chun, Sung-Woo;Choi, Jung-Kun;Oh, Seok-Youn;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.138-146
    • /
    • 1991
  • $Pd/SiO_2-Al_2O_3$ catalysts were prepared for the synthesis of pyridine and ${\beta}$-picoline from acrolein and ammonia. The activity of these catalysts decreased considerably by the formation of deposits on catalyst surface during the reaction. TPR study showed that the deposits were formed by the condensation polymerization of acrolein and ammonia. The conversion and production rate of pyridine and ${\beta}$-picoline decreased with the partial pressure of acrolein. The amount of deposits and the regeneration temperature of spent catalysts increased with the partial pressure of acrolein but they were independent of the concentration of ammonia.

  • PDF

Effect of Additives on the Contents of Fatty Acid Methyl Esters of Biodiesel Fuel in the Transesterification of Palm oil with Supercritical Methanol (팜유로부터 바이오디젤 연료를 합성하는 초임계유체반응에서 지방산메틸에스테르의 함량에 미치는 첨가물의 영향)

  • Lee, Hong-shik;Choi, Joon-hyuk;Shin, Young Ho;Lim, Youngsub;Han, Chonghun;Kim, Hwayong;Lee, Youn-Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.747-751
    • /
    • 2008
  • The effect of additives in the synthesis of biodiesel fuel using supercritical methanol was studied in order to examine the possibility of application of spent vegetable oil as a raw material, which has high contents of water or free fatty acid. The experiments were performed by varying the contents of water, free fatty acid or antioxidants respectively in a batch reactor. The contents of fatty acid methyl ester was analyzed by a gas chromatography. As the water contents increased, the contents of fatty acid methyl ester decreased, however, the decrease was very little compared with the alkaline and acid catalyst. The effect of the contents of free fatty acid, vitamin E, and ${\beta}$-carotene was negligible.

Efficiency Evaluation of Transition Metal-Based Additives for Efficient Thermochemical Conversion of Coffee Waste (커피찌꺼기의 효율적인 열화학 전환을 위한 전이 금속 기반 첨가제 효율 평가)

  • Cho, Dong-Wan;Jang, Jeong-Yun;Kim, Sunjoon;Yim, Gil-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • This work examined the effect of mixing transition metal-based additives [FeCl3, Fe-containing paper mill sludge (PMS), CoCl2·H2O, ZrO2, and α-Fe2O3] on the thermochemical conversion of coffee waste (CW) in carbon dioxide-assisted pyrolysis process. Compared to the generation amounts of syngas (0.7 mole% H2 & 3.0 mole% CO) at 700℃ from single pyrolysis of CW, co-pyrolysis in the presence of Fe- or Zr-based additives resulted in the enhanced production of syngas, with the measured concentrations of H2 and CO ranging 1.1-3.4 mole% and 4.6-13.2 mole% at the same temperature, respectively. In addition, α-Fe2O3 biochar possessed the adsorption capacity of As(V) (19.3 mg g-1) comparable to that of ZrO2-biochar (21.2 mg g-1). In conclusion, solid-type Fe-based additive can be highly considered as an efficient catalyst to simultaneously produce syngas (H2 & CO) as fuel energy resource and metal-biochar as sorbent.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.

Adsorption/Desorption Characteristics of Vanadium from Ammonium Metavanadate using Anion Exchange Resin (음(陰)이온교환수지(交換樹脂)를 이용한 Ammonium Metavanadate로부터 바나듐 흡탈착(吸脫着) 특성(特性))

  • Jeon, Jong Hyuk;Kim, Young Hun;Hwang, In Sung;Lee, Jin Young;Kim, Joon Soo;Han, Choon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Considering considerable contents of vanadium and tungsten in spent SCR DeNOx catalysts, separation and recovery of those metals are required. In this respect, commercial anion exchange resin (MP600) was employed to recover vanadium from the synthetic solution of ammonium metavanadate. Experimental results indicated that vanadium exist as anion under the acidic condition (pH 2 ~ 6) and adsorbed on the resin. Although the adsorption rate was increased with temperature, the maximum amount of adsorption was not affected by temperature. Desorption took place under either strong acidic (less than pH 1) or strong caustic (higher than pH 13) condition. However, desorption seldom took place under moderate conditions (pH 3~11). Furthermore, adsorption equilibrium results agreed well with Freundlich isotherm and pseudo-second-order reactions. And, adsorption energy was evaluated using Dubinin-Radushkevich and Temkin isotherm.

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.