• Title/Summary/Keyword: Spent Ginger Yeast Cultures

Search Result 1, Processing Time 0.014 seconds

Influence of spent ginger yeast cultures on the production performance, egg quality, serum composition, and intestinal microbiota of laying hens

  • Liu, Junhan;Jin, Yuhong;Yang, Junhua
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1205-1214
    • /
    • 2022
  • Objective: Spent ginger is a byproduct of juice extraction from the rhizome of ginger (Zingiber officinale). Despite its nutritional value, it is difficult to preserve or further process and thus is often wasted. This study uses spent ginger as a substrate for fermentation and cultivates spent ginger yeast cultures (SGYCs) that are then added to the feed of laying hens. The effects of SGYCs on production performance, egg quality, serum composition, and intestinal microbiota of laying hens were investigated. Methods: Eighty 60-week-old Hy-Line Brown hens were separated into 5 experimental groups with 4 replicates per group (4 hens per cage, 4 cages per replicate). The control group was fed a basal diet while experimental groups were also given SGYCs at the levels of 5, 10, 20, and 40 g/kg for 6 weeks. Results: The addition of SGYCs significantly increased the laying rate and nutrient digestibility, decreased feed conversion ratio, and enhanced the color of egg yolks (p<0.05). No changes were observed in activity levels of alanine aminotransferase and aspartate aminotransferase in the serum (p>0.05), but the activities of superoxide dismutase, glutathione peroxidase, and peroxidase all significantly increased, and contents of malondialdehyde were significantly reduced (p<0.05). In addition, changes in the relative abundance of Firmicutes and Bacteroidetes might be the main factor contributing to the significant increase in the apparent digestibility of crude protein and crude fat in laying hens (p<0.05). Conclusion: The current evidence shows that dietary supplementation of SGYCs to the feed of laying hens can improve laying rates, enhance antioxidative defenses, and influence dominant intestinal bacteria.