• Title/Summary/Keyword: Speller

Search Result 16, Processing Time 0.025 seconds

Construction of Roof Structure for Pusan Main Stadium (부산종합운동장 주경기장 지붕구조물의 시공)

  • Lee Ju-Young;Ryu Sang-Hyon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.228-231
    • /
    • 2001
  • Construction of roof structure, cable suspended structure, for Pusan main stadium is adapted a lifting method that is VSL lifting system. 5 precesses are practiced for erection of the roof structure including the first lifting process for erection of upper cables and the second lifting process for erection of lower cables. Since all cables of this roof structure with two open speller sockets are determined their length, some cable were wrong length, the roof structure would be unstable. But At complete of erection for the roof structure each cab3e is attained to theoretical tension force with average $4\%$ errors.

  • PDF

The evaluation of dose of TSEI with TLD and diode dector of the uterine cervix cancer (열형광선량계와 반도체검출기를 이용한 전신피부전자선조사의 선량평가)

  • Je Young Wan;Na Keyung Su;Yoon IL Kyu;Park Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2005
  • Purpose : To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Materials and Methods : Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and $116^{\circ}$. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. Result : The deviations of dose detected with TLD from tumor dose were CA $+\;6\%$, thigh $+\;8\%$, umbilicus $+\;4\%$, calf $-\;8\%$, vertex $-\;74.4\%$, deep axillae $-\;10.2\%$, anus and testis $-\;87\%$, sole $-\;86\%$ and nails shielded with 4mm lead $+4\%$. The deviations of dose detected with diode were $-4.5\%{\sim}+5\%$ at the patient center and $-1.1\%{\sim}+1\%$ at the speller. Conclusion : The deviation of total skin dose was $+\;8\%{\sim}-\;8\%$ and that deviation was within the acceptable range(${\pm}\;10\%$). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  • PDF

Evaluation of dose variation at the vertex during Total Skin Electron Beam (전신 피부 전자선 조사(TSEB)시 두정부(Vertex)에서의 선량 변화 평가)

  • Jeon Byeong-Chul;An Seung-Kwon;Lee Sang-Gyu;Kim Joo-Ho;Cho Kwang-Hwan;Cho Jung-Hee;Park Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.112-116
    • /
    • 2000
  • Purpose : The vertex scalp is always tangentially irradiated during total skin electron beam(TSEB) This study was discuss to the dose distribution at the vertex scalp and to evaluate the use of an electron reflector. positioned above the head as a means of improving the dose uniformity. Methods and Materials Vetex dosimetry was performed using ion-chamber and TLD. Measurements were 6 MeV electron beam obtained by placing an acrylic beam speller in the beam line. Studies were performed to investigate the effect of electron scattering on vertex dose when a lead reflector $40{\times}40cm$ in area, was positioned above the phantom. Results : The surface dose at the vertex, in the without of the reflector was found to be less than $37.8\%$ of the skin dose. Use of the lead reflector increased this value to $62.2\%$ for the 6 MeV beam. Conclusion : The vertex may be significantly under-dosed using standard techniques for total skin electron beam. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation.

  • PDF

Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain (스핀 라벨링 자기공명영상을 이용한 사람 뇌에서의 뇌 관류영상의 현실적 문제점을 향상 시키는 방법 연구)

  • Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this work practical considerations of a pulsed arterial spin labeling MRI are presented to reliable multi-slice perfusion measurements In the human brain. Three parameters were considered in this study. First, In order to improve slice profile and Inversion efficiency of a labeling pulse a high power Inversion pulse of adiabatic hyperbolic secant was designed. A $900^{\circ}$ rotation of the flip angle was provided to make a good slice profile and excellent Inversion efficiency. Second, to minimize contributions of a residual magnetization be4ween Interleaved scans of control and labeling we tested three different conditions which were applied 1) only saturation pulses, 2) only spotter gradients, and 3) combinations of saturation pulses and spotter gradients Applications of bo4h saturation pulses and spoiler gradients minimized the residual magnetization. Finally, to find a minimum gap between a tagged plane and an imaging plane we tested signal changes of the subtracted image between control and labeled Images with varying the gap. The optimum gap was about 20mm. In conclusion, In order to obtain high quality of perfusion Images In human brain It Is Important to use optimum parameters. Before routinely using In clinical studios, we recommend to make optimizations of sequence parameters.

  • PDF

Detecting Spelling Errors by Comparison of Words within a Document (문서내 단어간 비교를 통한 철자오류 검출)

  • Kim, Dong-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.83-92
    • /
    • 2011
  • Typographical errors by the author's mistyping occur frequently in a document being prepared with word processors contrary to usual publications. Preparing this online document, the most common orthographical errors are spelling errors resulting from incorrectly typing intent keys to near keys on keyboard. Typical spelling checkers detect and correct these errors by using morphological analyzer. In other words, the morphological analysis module of a speller tries to check well-formedness of input words, and then all words rejected by the analyzer are regarded as misspelled words. However, if morphological analyzer accepts even mistyped words, it treats them as correctly spelled words. In this paper, I propose a simple method capable of detecting and correcting errors that the previous methods can not detect. Proposed method is based on the characteristics that typographical errors are generally not repeated and so tend to have very low frequency. If words generated by operations of deletion, exchange, and transposition for each phoneme of a low frequency word are in the list of high frequency words, some of them are considered as correctly spelled words. Some heuristic rules are also presented to reduce the number of candidates. Proposed method is able to detect not syntactic errors but some semantic errors, and useful to scoring candidates.

Development of Total Body Irradiation Program (전신방사선조사 프로그램 개발)

  • Choi Byung Ock;Jang Ji Sun;Kang Young Nam;Choi Ihl Bohng;Shin Sung Kyun
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.130-137
    • /
    • 2005
  • In total body irradiation (T81) for leukemia, we have a two methode. One is a AP (anterior-posterior) method and the other is a Lateral methode. Our hospital used lateral methode. T81 must consider about body contour, because of homogeneous dose distribution. For compensation about irregular body contour, we use compensator. For T81 treatment, we must be considered, accurate manufacture of compensator and accurate calculation of dose. We developed the automatic program for T81. This program accomplished for compensator design and dose calculation for irregular body. This program was developed for uses to use in a windows environment using the IDL language. In this program, it use energy data for each energy: TMR, output factor, inverse square law, spoiler, field size factor. This program reduces the error to happen due to the manual. As a development of program, we could decrease the time of treatment plan and care the patient accurately.

  • PDF