• 제목/요약/키워드: Speeded Up Robust Features

검색결과 63건 처리시간 0.022초

Panoramic Image Stitching using SURF

  • You, Meng;Lim, Jong-Seok;Kim, Wook-Hyun
    • 융합신호처리학회논문지
    • /
    • 제12권1호
    • /
    • pp.26-32
    • /
    • 2011
  • This paper proposes a new method to process panoramic image stitching using SURF(Speeded Up Robust Features). Panoramic image stitching is considered a problem of the correspondence matching. In computer vision, it is difficult to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. However, SURF algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform). In this work, we also describe an efficient approach to decreasing computation time through the homography estimation using RANSAC(random sample consensus). RANSAC is a robust estimation procedure that uses a minimal set of randomly sampled correspondences to estimate image transformation parameters. Experimental results show that our method is robust to rotation, zoom, Gaussian noise and illumination change of the input images and computation time is greatly reduced.

A Computer Vision-Based Banknote Recognition System for the Blind with an Accuracy of 98% on Smartphone Videos

  • Sanchez, Gustavo Adrian Ruiz
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.67-72
    • /
    • 2019
  • This paper proposes a computer vision-based banknote recognition system intended to assist the blind. This system is robust and fast in recognizing banknotes on videos recorded with a smartphone on real-life scenarios. To reduce the computation time and enable a robust recognition in cluttered environments, this study segments the banknote candidate area from the background utilizing a technique called Pixel-Based Adaptive Segmenter (PBAS). The Speeded-Up Robust Features (SURF) interest point detector is used, and SURF feature vectors are computed only when sufficient interest points are found. The proposed algorithm achieves a recognition accuracy of 98%, a 100% true recognition rate and a 0% false recognition rate. Although Korean banknotes are used as a working example, the proposed system can be applied to recognize other countries' banknotes.

영상 특징 검출 기반의 실시간 실내 장소 인식 시스템 (A Real-time Indoor Place Recognition System Using Image Features Detection)

  • 송복득;신범주;양황규
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.76-83
    • /
    • 2012
  • In a real-time indoor place recognition system using image features detection, specific markers included in input image should be detected exactly and quickly. However because the same markers in image are shown up differently depending to movement, direction and angle of camera, it is required a method to solve such problems. This paper proposes a technique to extract the features of object without regard to change of the object scale. To support real-time operation, it adopts SURF(Speeded up Robust Features) which enables fast feature detection. Another feature of this system is the user mark designation which makes possible for user to designate marks from input image for location detection in advance. Unlike to use hardware marks, the feature above has an advantage that the designated marks can be used without any manipulation to recognize location in input image.

고해상도 시계열 광학 위성 영상과 특징점 추적 기법을 이용한 북극해 해빙 이동 탐지 (Arctic Sea Ice Motion Measurement Using Time-Series High-Resolution Optical Satellite Images and Feature Tracking Techniques)

  • 현창욱;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1215-1227
    • /
    • 2018
  • 해빙의 이동은 지역적 분포뿐만 아니라 해빙의 생성 및 두께에도 영향을 미치기 때문에 해빙의 변화를 평가하는 데에 중요한 정보가 된다. 이 연구에서는 북극해 해빙의 이동 특성 탐지를 위해 Korea Multi-Purpose Satellite-2(KOMPSAT-2)와 Korea Multi-Purpose Satellite-3(KOMPSAT-3)의 두 위성 센서로부터 다중 시기 고해상도 광학 위성 영상을 획득하고, SIFT(Scale-Invariant Feature Transform), SURF(Speeded Up Robust Features) 및 ORB(Oriented FAST and Rotated BRIEF)의 특징점 추적 기법을 적용하였다. 두 위성 센서에서 획득된 영상의 활용을 위해 전처리 단계에서 공간해상도와 방사해상도를 일치시킨 후 특징점 추적 기법을 적용한 결과 SIFT의 경우 영상 전반에 걸쳐 특징점의 고른 공간 분포가 나타났고, SURF의 경우 해빙과 해양의 경계 부분에 특징점이 주요하게 분포하는 경향이 관찰되었으며 이러한 경향은 ORB에서 가장 현저하게 나타났다. 특징점 추적 기법별 연산 시간 측정 결과 SIFT, SURF 및 ORB의 순서로 연산 시간이 감소하였다. ORB의 경우 SIFT 기법 대비 추적된 특징점 수가 평균 59.8%로 줄어들었지만 연산 시간은 평균 8.7%에 해당하는 시간이 소요되어 해빙 이동 특성의 고속 탐지에 적합한 기법으로 판단된다.

SURF 특징 검출기와 기술자를 이용한 파노라마 이미지 처리에 관한 연구 (Study on the panorama image processing using the SURF feature detector and technicians.)

  • 김남우;허창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.699-702
    • /
    • 2015
  • 다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. 본 논문에서는 두 영상 사이 또는 하나의 영상과 여러 영상 사이에 대응되는 매칭을 계산하여 파노라마영상을 생성하는 처리 방법을 구현하고 기술하였다.

  • PDF

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류 (Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications)

  • 모하마드 카이룰 이슬람;파라 자한;민재홍;백중환
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.12-20
    • /
    • 2011
  • 본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.

드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교 (Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images)

  • 이충호;김의명
    • 한국측량학회지
    • /
    • 제40권2호
    • /
    • pp.79-89
    • /
    • 2022
  • 드론을 이용하여 촬영한 영상은 소규모 지역에 대하여 고품질의 3차원 공간정보를 빠르게 구축할 수 있어 신속한 의사결정이 필요한 분야에 적용되고 있다. 드론 영상을 기반으로 공간정보를 구축하기 위해서는 인접한 드론 영상 간에 특징점 추출하고 영상 매칭을 수행하여 영상 간의 관계를 결정할 필요가 있다. 이에 본 연구에서는 드론을 이용하여 촬영한 주차장과 호수가 공존하는 지역, 건물이 있는 도심 지역, 자연 지형의 들판 지역의 3가지 대상지역을 선정하고 AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB(Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) 알고리즘의 성능을 분석하였다. 특징점 추출 알고리즘의 성능은 추출된 특징점의 분포, 매칭점의 분포, 소요시간, 그리고 매칭 정확도를 비교하였다. 주차장과 호수가 공존하는 지역에서는 BRISK 알고리즘의 속도가 신속하였으며, SURF 알고리즘이 특징점과 매칭점의 분포도와 매칭 정확도에서 우수한 성능을 나타내었다. 건물이 있는 도심 지역에서는 AKAZE 알고리즘의 속도가 신속하였으며 SURF 알고리즘이 특징점과 매칭점의 분포도와 매칭 정확도에서 우수한 성능을 나타내었다. 자연 지형의 들판 지역에서는 SURF 알고리즘의 특징점, 매칭점이 드론으로 촬영한 영상 전반적으로 고르게 분포되어 있으나 AKAZE 알고리즘이 가장 높은 매칭 정확도와 신속한 속도를 나타내었다.

무인항공기 RGB 기준 정사영상을 이용한 특징점 추출 알고리즘 비교 (Comparison of Feature Point Extraction Algorithms Using Unmanned Aerial Vehicle RGB Reference Orthophoto)

  • 이기림;성지훈;정세정;신현길;김도훈;이원희
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.263-270
    • /
    • 2024
  • 무인항공기와 무인항공기 센서가 다양하게 개발됨에 따라 기존의 항공사진 또는 원격탐사보다 좁은 면적에 대한 정보를 빠르게 업데이트할 수 있다. 하지만 무인항공기 사진측량에서 지상기준점의 획득과 입력은 많은 시간이 소요되며, 지상기준점 측량과 입력이 잘못될 경우 기하 왜곡이 발생한다. 본 연구에서는 이러한 지상기준점 획득과 입력의 시간을 줄이기 위해 RGB 기준 정사영상을 제작하고, 다양한 센서의 목적 정사영상에 특징점 알고리즘을 적용하여 비교·평가를 수행하였다. 연구대상지 2곳에 대해 4가지 특징점 추출 알고리즘을 적용했으며, 그 결과 특징점 대비 매칭쌍의 비율은 speeded up robust features(SURF)가 가장 우수하였다. 전체적으로 비교했을 때 accelerated-KAZE(AKAZE) 방법이 가장 많은 특징점과 매칭쌍을 추출했으며, binary robust invariant scalable keypoints(BRISK) 방법이 가장 적은 특징점과 매칭쌍을 추출했다. 본 결과를 통해 센서별 목적 정사영상 기하보정 수행 시 AKAZE 방법이 우수한 것을 확인할 수 있었다.

Improvement Scheme of Airborne LiDAR Strip Adjustment

  • Lee, Dae Geon;Lee, Dong-Cheon
    • 한국측량학회지
    • /
    • 제36권5호
    • /
    • pp.355-369
    • /
    • 2018
  • LiDAR (Light Detection And Ranging) strip adjustment is process to improve geo-referencing of the ALS (Airborne Laser Scanner) strips that leads to seamless LiDAR data. Multiple strips are required to collect data over the large areas, thus the strips are overlapped in order to ensure data continuity. The LSA (LiDAR Strip Adjustment) consists of identifying corresponding features and minimizing discrepancies in the overlapping strips. The corresponding features are utilized as control features to estimate transformation parameters. This paper applied SURF (Speeded Up Robust Feature) to identify corresponding features. To improve determination of the corresponding feature, false matching points were removed by applying three schemes: (1) minimizing distance of the SURF feature vectors, (2) selecting reliable matching feature with high cross-correlation, and (3) reflecting geometric characteristics of the matching pattern. In the strip adjustment procedure, corresponding points having large residuals were removed iteratively that could achieve improvement of accuracy of the LSA eventually. Only a few iterations were required to reach reasonably high accuracy. The experiments with simulated and real data show that the proposed method is practical and effective to airborne LSA. At least 80 % accuracy improvement was achieved in terms of RMSE (Root Mean Square Error) after applying the proposed schemes.