• 제목/요약/키워드: Speed-Sensitive

검색결과 494건 처리시간 0.031초

순시무효전력과 퍼이 이득 보상기를 이용한 IPMSM의 속도 센서리스 제어 (Speed Sensorless Control for Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power and a Fuzzy PI Compensator)

  • 강형석;신재화;유완식;강민형;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.173-174
    • /
    • 2007
  • In this paper, a new speed sensorless control based on an instantaneous reactive power and a fuzzy PI compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional fixed gain PI and PID controllers are very sensitive to step change of command speed, parameter variations and load disturbance. Also, to the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In a fuzzy compensator, the system control parameters are adjusted by a fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

  • PDF

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구 (A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.

AIPI 제어기를 이용한 IPMSM의 고성능 제어 (High Performance Control of IPMSM using AIPI Controller)

  • 김도연;고재섭;최정식;정철호;정병진;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

적응학습 퍼지뉴로 제어를 이용한 IPMSM 드라이브의 HIPI 제어기 (HIPI Controller of IPMSM Drive using ALM-FNN Control)

  • 김도연;고재섭;최정식;정철호;정병진;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.420-423
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer

  • He, Y.C.;Chan, P.W.;Li, Q.S.
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.419-433
    • /
    • 2013
  • This paper investigates the vertical profiles of horizontal mean wind speed and direction based on the synchronized measurements from a Doppler radar profiler and an anemometer during 16 tropical cyclones at a coastal site in Hong Kong. The speed profiles with both open sea and hilly exposures were found to follow the log-law below a height of 500 m. Above this height, there was an additional wind speed shear in the profile for hilly upwind terrain. The fitting parameters with both the power-law and the log-law varied with wind strength. The direction profiles were also sensitive to local terrain setups and surrounding topographic features. For a uniform open sea terrain, wind direction veered logarithmically with height from the surface level up to the free atmospheric altitude of about 1200 m. The accumulated veering angle within the whole boundary layer was observed to be $30^{\circ}$. Mean wind direction under other terrain conditions also increased logarithmically with height above 500 m with a trend of rougher exposures corresponding to lager veering angles. A number of empirical parameters for engineering applications were presented, including the speed adjustment factors, power exponents of speed profiles, and veering angle, etc. The objective of this study aims to provide useful information on boundary layer wind characteristics for wind-resistant design of high-rise structures in coastal areas.

Analysis of spraying performance of agricultural drones according to flight conditions

  • Dae-Hyun Lee;Baek-Gyeom Seong;Seung-Woo Kang;Soo-Hyun Cho;Xiongzhe Han;Yeongho Kang;Chun-Gu Lee;Seung-Hwa Yu
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.427-435
    • /
    • 2023
  • This study was conducted to evaluate the spraying performance according to the flight conditions of agricultural drones for the development of a variable control system. The analyzed flight conditions comprised six factors: spraying direction, flight speed, altitude, wind speed, wind direction, and rotor rotational speed. The ratio of the area sprayed on the water-sensitive paper was used as the coverage, and the distribution and amount of the coverage were evaluated. The coverage distribution based on the distance from the drone was used to evaluate a spray pattern, and the distribution was expressed as a Gaussian function approximation. In addition, the probability distribution based on coverage was expressed as the cumulative probability via Gamma function approximation to analyze the spraying efficiency in the target area. The results showed that the averaged coverage decreased significantly as the flight speed and wind speed increased, and the wind direction changed the spray pattern without a coverage decrease. This study contributes to the development of a control technique for the precision control system of agricultural drones.

기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석 (Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index)

  • 남기표;강정언;김철희
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

여수지역 대기확산의 수치 모사 -I. 지형의 영향- (Simulation of Atmospheric Dispersion over the Yosu Area -I. Terrain Effects-)

  • 김영성;오현선
    • 한국대기환경학회지
    • /
    • 제16권3호
    • /
    • pp.211-223
    • /
    • 2000
  • The atmospheric dispersion of a pollutant emitted from a hypothetical source located in the middle of the Yochon Industrial Estate was simulated by using the Regional Atmospheric Modeling System (RAMS). Four horizontally nested grids were employed: the coarsest one covered the southern part of the Korean Peninsula including Mt. Chiri and the finest one covered the Yochon Industrial Estate and the surrounding area. Wind fields were initially assumed horizontally homogeneous with a wind speed of 4m/s, the average for the Yosu area, and were developed without both external forces and diurnal changes in order to investigate the terrain-induced phenomena. Wind directions that could emphasize the terrain effects on the pollutant transport and that could carry pollutants to a highly-popluated area were selected for the dispersion study. A pollutant was released for 24hours from a grid-base volume source after a 24-h blank run for developing the wind field. The dispersion study showed that the pollutant from the present source location did not directly affect the Yosu City, but showed high concentrations at locations behind the hills 5 to 6 km away from the source according to wind directions. When the wind speed was low, close to calm condition, the pollutant was detected at upstream locations 6 to 7 km from the source. In comparison with the results from the RAMS simulation, the Industrial Source Complex Short-Term Model(ISCST3) predicted a narrow dispersion that was sensitive to the wind direction. When the wind velocity was affected by the local environment, the ISCST3 calculation using that data also gave a lop-sided result, which was different from the distribution of the pollutant reproduced by RAMS.

  • PDF

단기 관측을 통한 설계풍속 추정 (Estimation of Design Wind Velocity Based on Short Term Measurements)

  • 권순덕;이성로
    • 대한토목학회논문집
    • /
    • 제29권3A호
    • /
    • pp.209-216
    • /
    • 2009
  • 풍하중이 지배적인 구조물의 경우에 정확한 설계풍속의 산정은 구조적 안정성뿐만 아니라 경제성까지도 좌우하게 된다. 본 연구에서는 광양대교 현장에 설치된 관측탑에서 약 1년간 측정한 풍속을 사용하여 풍환경을 분석하였고, MCP(Measure-Correlate-Predict) 방법을 적용하여 관측치로부터 장기 풍속을 추정하였다. 그 결과를 보면, 광양만은 바다이지만 개활지에 가까운 풍속 특성을 나타내고 있으며, 조도지수는 고도에 따라 달라지는 것으로 나타났다. 아울러 풍향에 따라 난류강도와 조도지수가 상당히 차이나는 것으로 나타났다. MCP 방법으로 추정한 200년빈도 설계풍속은 초기설계치보다 20 m/s이상 낮았으며, 실측된 풍속과 거스트계수를 고려한 설계풍하중은 초기설계치의 36%밖에 안되는 것으로 나타났다. 이를 볼 때 국부적인 지형의 영향으로 추정한 교량 현장의 풍환경과 직접 측정한 풍환경은 차이가 나므로, 경제적이고 안전한 설계를 위해서는 단기간이라도 현장 풍환경 관측이 필요하다고 판단된다.