• 제목/요약/키워드: Speed of Tool Feed

검색결과 343건 처리시간 0.03초

인코넬 690 합금의 절삭성에 관한 연구 (Machinability Characteristics of Inconel 690 Alloys)

  • 황경충;윤종호;최재하;김성청
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.87-94
    • /
    • 2002
  • In domestic industry, there is no manufacturers specialized in the production of cutting tools for the difficult cutting materials. Then, we have flew data about them. In this study, the gear driving high speed lathe on which is mounted by a tool dynamometer and high speed CCTV were used to measure the various machining characteristics. Relations among the cutting speed, feed rate per revolution, cutting depth, cutting forces and surface roughness ware graphically analyzed under 64 cutting conditions. The process of chip, i.e., generation, development and falling-off also were visualized for the characterization of chip shapes of the difficult-to-cut materials using the CCTV.

신경회로망을 이용한 밀링 공정의 진동 예측 (Vibration Prediction in Mill Process by Using Neural Network)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.272-277
    • /
    • 2003
  • In order to predict vibration during end-milling process, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting states. Specific cutting constants of the cutting dynamics model were obtained by averaging cutting forces and tool diameter, cutting speed, feed, axial depth radial depth were considered as machining factors. Cutting farces by test and by neural network simulation were compared and the vibration during end-milling was simulated.

  • PDF

Statistical analysis and modelization of tool life and vibration in dry face milling of AISI 52100 STEEL in annealed and hardened conditions

  • Benghersallah, Mohieddine;Medjber, Ali;Zahaf, Mohamed Zakaria;Tibakh, Idriss;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • 제9권3호
    • /
    • pp.189-202
    • /
    • 2020
  • The objective of the present work is to investigate the effect of cutting parameters (Vc, fz and ap) on tool life and the level of vibrations velocity in the machined part during face milling operation of hardened AISI 52100 steel. Dry-face milling has been achieved in the annealed (28 HRc) and quenched (55 HRc) conditions using multi-layer coating micro-grain carbide inserts. Statistical analysis based on the Response surface methodology (RSM) and ANOVA analysis have been conducted through a plan of experiments methodology using a reduced Taguchi table (L9) in order to obtain engineering models for tool life and vibration velocity in the workpiece for both heat treatment conditions. The results show that the cutting speed has a dominant influence on tool life for both soft and hard part. Cutting speed and feed per tooth is the most significant parameters for vibration levels. Comparing the experimental values with those predicted by the developed engineering models of tool life and levels of vibrations velocity, a good correlation has been obtained (between 97% and 99%) in annealed and hard conditions.

CNC 자동선반을 이용한 SCM415강의 소형 깊은 내경홀 가공 특성 연구 (A Study on the Machining Characteristics of SCM415 Steel with Small Deep Inner Diameter Holes Using CNC Automatic Lathes)

  • 최철웅;김진수
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.23-30
    • /
    • 2022
  • Small-scale production is increasing, and the manufacturing industry is gradually changing into a smart manufacturing industry. Therefore, research on securing optimal cutting conditions for factors affecting machining precision during cutting is very important. Therefore, the purpose of this study is to After machining the inner diameter hole of SCM415 steel with a cermet tool on a CNC automatic lathe, the surface roughness, dimensional accuracy, and dimensional straightness are measured according to the feed rate to analyze the machining characteristics and suggest optimal cutting conditions. The test material was cut using a cermet tool for secondary cutting after a round bar with a diameter of 20 mm was mounted on a CNC automatic lathe. The cutting length was fixed at 0.5 mm, and the cutting speed was fixed at 3200 rpm. When the feed rate was changed to 0.05, 0.1, and 0.15 mm/rev, the respective surface roughness during the 15th test was measured. Consequently, The lower the feed rate, the better is the surface roughness. In addition, the optimum cutting conditions for SCM415 steel were observed to be the most ideal cutting conditions than the condition of 0.05 mm/rev at a cutting speed of 3,200 rpm and a feed rate of 0.1 mm/rev.

단침보강세라믹공구를 이용한 금형강(SKD61)의 선삭가공 시 표면거칠기에 영향을 미치는 인자 및 회귀방정식 도출 (Extract to Affected Factor to Surface Roughness and Regression Equation in Turning of Mold Steel(SKD61) by Whisker Reinforced Ceramic Tool)

  • 배명일;이이선;김형철
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.118-124
    • /
    • 2012
  • In this study, we turning mold steel (SKD61) using whisker reinforced ceramic tool (WA1) to get affected factor to surface roughness and regression equation. For this study, we adapt system of experiments. Results are follows; From the analysis of variance, it was found that affected factor to surface roughness was feed rate, cutting speed, depth of cut in order. From multi-regression analysis, we calculated regression equation and the coefficient of determination($R^2$). $R^2$ was 0.978 and It means regression equation is significant. Regression equation means if feed rate increase 0.039mm/rev, surface roughness will increase $0.8391{\mu}m$, if cutting speed increase 50m/min, surface roughness will decrease $0.034{\mu}m$, if depth of cut increase 0.1mm, surface roughness will increase $0.0203{\mu}m$. From the experimental verification, it was confirmed that surface roughness was predictable by system of experiments.

초경 인서트 드릴의 절삭 조건에 관한 연구 (Cutting Conditions of Carbide Insert Drill)

  • 최성윤;황철웅;이상태
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.10-16
    • /
    • 2021
  • Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.

다이아몬드 코어드릴의 중공비가 절삭력에 미치는 영향 (A Study of the Effectiveness of Hollow Ratio on Cutting Force of Diamond Core Drill)

  • 김광민;최성대;홍영배
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.135-141
    • /
    • 2011
  • In this study, the variation of the cutting forces generated in the machining process were evaluated experimentally. A material of $Al_{2}O_{3}$ ceramic and a tool of the dynamometer were used for the measurements of the cutting forces. With the constant rates of the feed and the tool rotation, the cutting forces were measured along three axial directions(X, Y, Z axis) for the various values of the hollow ratio. It was found that the cutting force be increasing linearly along the direction of Z axis, but along X, Y axis be not varied. Also from the viewpoint of the precesses of the hole drilling, the cutting force was found to be increasing sharply at the beginning process, but from the eighth process be increasing smoothly. As conclusions, the cutting force generated by machining for the material of $Al_{2}O_{3}$ ceramic are influenced more significantly by the feed rate and the hollow ratio than by the tool rotational speed.

Al 6061의 초정밀 절삭특성 (Ultra Precision cutting Characteristics for Al 6061)

  • 박상진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.591-596
    • /
    • 2000
  • The needs of ultra precision machined parts is increase every days. But the experimental data of nonferrous metal is insufficient. The cutting behavior in micro cutting area is different from that of traditional cutting because of the size effect. Al6061 is widely used as optical parts such as LASER reflector's mirror or multimedia instrument. Al6061 opper is machined by ultra precision machine with natural diamond tool. From the experiment and discussion on the cutting force and worked surface roughness as the variable spindle speed, feed rate and depth of cut. As a result, the cutting force increases as the increasing depth of cut, but the worked surface roughness does not increase so much. The surface roughness is good when spindle sped is above 1200rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

초정밀 다이아몬드 터닝에 의한 무전해 니켈의 피삭성 연구 (A Study on the Machinability of Electroless Nickel by the Ultra-Precision Diamond Turning)

  • 김우순;김동현;난바의치
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.27-33
    • /
    • 2004
  • The ultra-precision cutting is a key technique for the manufacture of optical components such as aluminium mirrors, electroless nickel mirror, plastic mirror in a variety of advanced science and technology applications. The paper presents experimental results of ultra-precision diamond fuming of electroless nickel materials. In general, the cutting condition such as feed rate and depth of rut, have effect on the surface roughness in ultra-precision diamond turning. To obtain an optimal cutting condition, we studied the effect of the cutting speed. the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness. So, the relationship of the surface roughness and cutting condition has been clarified. From the experimental results, the machined surface roughnesses were obtained less than 1nm rms.

고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정 (High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition)

  • 김민태;제성욱;이해성;주종남
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.