• Title/Summary/Keyword: Speed Camera Location

Search Result 57, Processing Time 0.026 seconds

Traffic Safety Recommendation Using Combined Accident and Speeding Data

  • Onuean, Athita;Lee, Daesung;Jung, Hanmin
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • Speed enforcement is one of the major challenges in traffic safety. The increasing number of accidents and fatalities has led governments to respond by implementing an intelligent control system. For example, the Korean government implemented a speed camera system for maintaining road safety. However, many drivers still engage in speeding behavior in blackspot areas where speed cameras are not provided. Therefore, we propose a methodology to analyze the combined accident and speeding data to offer recommendations to maintain traffic safety. We investigate three factors: "section," "existing speed camera location," and "over speeding data." To interpret the results, we used the QGIS tool for visualizing the spatial distribution of the incidents. Finally, we provide four recommendations based on the three aforementioned factors: "investigate with experts," "no action," "install fixed speed cameras," and "deploy mobile speed cameras."

The Flight Data Measurement System of Flying Golf Ball Using the High Speed CCD Camera (고속 카메라를 CCD 이용한 비행골프공의 데이터 측정 시스템)

  • Kim, Ki-Hyun;Jo, Jae-Ik;Yun, Chang-Ok;Park, Hyun-Woo;Joo, Woo-Suk;Lee, Dong-Hoon;Yun, Tae-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.168-172
    • /
    • 2009
  • Recently, while 3D sports game increases, the research that it recognizes the operation of the real user actively progresses. Most of all, the research about the golf is active. In this paper, the image acquiring in a high-speed CCD camera measures the flight data of the golf ball through the image processing. While photographing, the high-speed camera, using this system, exposes an image at regular intervals. And line scan camera checks whether the golf ball passed or not. After the location information of the calculated golf ball calculates a speed and a direction by using the physical formula, it applies the golf simulation.

  • PDF

Sector Based Scanning and Adaptive Active Tracking of Multiple Objects

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1166-1191
    • /
    • 2011
  • This paper presents an adaptive active tracking system with sector based scanning for a single PTZ camera. Dividing sectors on an image reduces the search space to shorten selection time so that the system can cover many targets. Upon the selection of a target, the system estimates the target trajectory to predict the zooming location with a finite amount of time for camera movement. Advanced estimation techniques using probabilistic reason suffer from the unknown object dynamics and the inaccurate estimation compromises the zooming level to prevent tracking failure. The proposed system uses the simple piecewise estimation with a few frames to cope with fast moving objects and/or slow camera movements. The target is tracked in multiple steps and the zooming time for each step is determined by maximizing the zooming level within the expected variation of object velocity and detection. The number of zooming steps is adaptively determined according to target speed. In addition, the iterative estimation of a zooming location with camera movement time compensates for the target prediction error due to the difference between speeds of a target and a camera. The effectiveness of the proposed method is validated by simulations and real time experiments.

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

Human-Computer Interaction Based Only on Auditory and Visual Information

  • Sha, Hui;Agah, Arvin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.285-297
    • /
    • 2000
  • One of the research objectives in the area of multimedia human-computer interaction is the application of artificial intelligence and robotics technologies to the development of computer interfaces. This involves utilizing many forms of media, integrating speed input, natural language, graphics, hand pointing gestures, and other methods for interactive dialogues. Although current human-computer communication methods include computer keyboards, mice, and other traditional devices, the two basic ways by which people communicate with each other are voice and gesture. This paper reports on research focusing on the development of an intelligent multimedia interface system modeled based on the manner in which people communicate. This work explores the interaction between humans and computers based only on the processing of speech(Work uttered by the person) and processing of images(hand pointing gestures). The purpose of the interface is to control a pan/tilt camera to point it to a location specified by the user through utterance of words and pointing of the hand, The systems utilizes another stationary camera to capture images of the users hand and a microphone to capture the users words. Upon processing of the images and sounds, the systems responds by pointing the camera. Initially, the interface uses hand pointing to locate the general position which user is referring to and then the interface uses voice command provided by user to fine-the location, and change the zooming of the camera, if requested. The image of the location is captured by the pan/tilt camera and sent to a color TV monitor to be displayed. This type of system has applications in tele-conferencing and other rmote operations, where the system must respond to users command, in a manner similar to how the user would communicate with another person. The advantage of this approach is the elimination of the traditional input devices that the user must utilize in order to control a pan/tillt camera, replacing them with more "natural" means of interaction. A number of experiments were performed to evaluate the interface system with respect to its accuracy, efficiency, reliability, and limitation.

  • PDF

A Study on the Metal Transfer and Spatter Generation in High Current $CO_2$ Welding (고전류 $CO_2$용접에서의 금속이행 및 스패터 발생 현상에 관한 연구)

  • 김남훈;유회수;김희진;고진현
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.51-57
    • /
    • 2003
  • The metal transfer in $CO_2$ welding shows the transition of transfer mode from short-circuiting to repelled transfer will the increase of welding current. While the short-circuiting mode in $CO_2$ welding has been studied very extensively relating with droplet formation and spatter generation, the repelled transfer has little been understood. In this study, high current $CO_2$ welding has been performed with bead-on-plate welds along with the waveform analyzer and high speed camera. The image of high speed camera was synchronized with its waveform so that the moment of spatter generation could be realized during drop detachment. As a results of this study, it was found that welding arc changes its location either once or three times and thus single or double pulse signals were developed in the voltage waveform. Whenever the arc moved its location, new arc was developed in a explosive way and thus it caused spatter generation. Specially severe spattering took place when the waveform showed a double-peak pattern. As a consequence of these results, new waveform control techniques could be suggested for suppressing the spatter generation in the high-current $CO_2$ welding.

Speeding Detection and Time by Time Visualization based on Vehicle Trajectory Data

  • Onuean, Athita;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.593-596
    • /
    • 2018
  • The speed of vehicles has remained a significant factor that influences the severity of accidents and traffic accident rate in many parts of the world including South Korea. This behavior where drivers drive at speeds which exceed a posted safe threshold is known as 'speeding'. Over the past twenty years, the Korean National Police Agency (NPA) has become aware of an increased frequency of drivers who are speeding. Therefore, fixed-type ASE systems [1] have been installed on hazardous road sections of many highways. These system monitor vehicle speeds using a camera. However, the use of ASE systems has changed the behavior of the drivers. Specifically, drivers reduce speed or avoid the route where the cameras are mounted. It is not practical to install cameras at every possible location. Therefore, it is challenging to thoroughly explore the location where speeding occurs. In view of these problems, the author of this paper designed and implemented a prototype visualization system in which point and color are used to show vehicle location and associated over-speed information. All of this information was used to create a comprehensive visualization application to show information about vehicle driving. In this paper, we present an approach detecting vehicles moving at speeds which exceed a threshold and visualizing the points those violations occur on a map. This was done using vehicle trajectory data collected in Daegu city. We propose steps for exploring the data collected from those sensors. The resulting mapping has two layers. The first layer contains the dynamic vehicle trajectory data. The second underlying layer contains the static road networks. This allows comparing the speed of vehicles on roads with the known maximum safe speed of those roads, and presents the results with a visualization tool. We also compared data about people who drive over threshold safe speeds on each road on days and weekends based on vehicle trajectories. Finally, our study suggests improved times and locations where law enforcement should use monitoring with speed cameras, and where they should be stricter with traffic law enforcement. We learned that people will drive over the speed limit at midnight more than 1.9 times as often when compared with rush hour traffic at 8 o'clock in the morning, and 4.5 times as often when compared with traffic at 7 o'clock in the evening. Our study can benefit the government by helping them select better locations for installation of speed cameras. This would ultimately reduce police labor in traffic speed enforcement, and also has the potential to improve traffic safety in Daegu city.

  • PDF

The Measurement of Flight Data of Golfball with High-Speed Multi-Exposure Image (고속 다중 노출 영상을 이용한 골프공의 비행 요소 측정)

  • Kim, Ki-Hyun;Park, Hyun-Woo;Ju, Woo-Suk;Lee, Dong-Hoon;Yun, Tae-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.699-707
    • /
    • 2009
  • Recently, while 3D sports game increases, the research that it recognizes the operation of the real user actively progresses. Most of all, the research about the golf is active. In this paper, the camera acquiring in a high-speed multi-exposure image measures the flight data of the golf ball through the image processing. While photographing, the high-speed camera, using this system, exposes an image at regular intervals. And line scan camera checks whether the golf ball passed or not. After the location information of the calculated golf ball calculates a speed and a direction by using the physical formula, it applies the golf simulation. After, this system is possible the measurement of the physical element of the spherical object.

  • PDF

Traffic Accident Analysis using Doppler Effect of the Horn (경적음의 도플러 효과를 이용한 교통사고분석)

  • Choi, Youngsoo;Kim, Jonghyuk;Yun, Yongmun;Park, Jongchan;Park, Hasun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.70-77
    • /
    • 2020
  • In this study, we estimate the vehicle speed by analyzing the acoustic data recorded in a single microphone of a surveillance camera. The frequency analysis of the acoustic data corrects the Doppler effect, which is a characteristic of the moving sound source, and reflects the geometric relationship according to the location of the sound source and the microphone on the two-dimensional plane. The acoustic data is selected from the horn sound that is mainly observed in an urgent situation among various sound sources that may occur in a traffic accident, and the characteristics of the monotone source are considered. We verified the reliability of the proposed method by time domain acoustic analysis and actual vehicle evaluation. This method is effective and can be used for traffic accident analysis in the blind spot of the camera using a single microphone built into the existing surveillance camera.

Measurement of Archer's Paradox Size using Multiple Frames (다중프레임을 이용한 궁사의 패러독스 크기 측정)

  • Kim, Jonggeun;Jeong, Yeongsang;Song, Moonjae;Kim, Sungshin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • An arrow produced by a manufacturing process is evaluated using the archer's paradox and the intensity of the impact point. The accuracy rate in particular is changed by the arrow's vibrational movement, which is called the archer's paradox. The archer's paradox occurs not only in the right, left, upward, and downward directions, but in all directions. The optimized value of the archer's paradox has not been studied yet. This paper proposes to measure the archer's paradox to determine its optimized value. Measuring the archer's paradox using a high-speed camera is expensive, and it is difficult to translate the result to a numerical value. However, the device for measuring the archer's paradox proposed in this paper is inexpensive, and the results are easy to convert to a numerical value. Therefore, this device is more suitable for optimization of the archer's paradox than a high-speed camera. In this paper, we propose to measure the size of the paradox using multiple frames, which can measure the position of an arrow moving at a speed of 300km/h to within millimeters. We calculate the size of the paradox experimentally using the measured location in each frame. This value is not an approximate value, but an accurate numerical value.