• Title/Summary/Keyword: Speed Camera

Search Result 1,322, Processing Time 0.02 seconds

A Study on the Correlation Analysis of EEG and Vibraimage due to Auditory and Olfactory Stimulation (청각 및 후각자극에 의한 뇌파(EEG)와 진동이미지기술의 상관성 분석에 관한 연구)

  • Kim, Jung-Min;Kim, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4291-4297
    • /
    • 2015
  • EEG has been used to measure the emotion of amenity and discomfort in the interior space. EEG is limited to the experiment, because it is a equipment of contact type. However, Vibraimage can measure the emotion with a web camera. Because Vibraimage is a equipment of non-contact type, it is more suitable for the interior space than EEG. Therefor, it tries to find a correlation variable between EEG and Vibraimage to measure the human emotions. In this study, it were analyzed correlation of EEG and vibraimage due to variation of loudness 60[dB], 90[dB] and rosemary, jasmine scents. Check the health status of subjects who were selected 3 male students, and the period of this experiment was about months. The condition of the environmental test room was in temperature 25[$^{\circ}C$], relative humidity 50[RH%], air current speed 0.02[m/s] and illuminance 1000[lux]. It were analyzed correlation of twenty-three index of EEG(absolute ${\theta}$, relative ${\theta}$, absolute $S{\alpha}$, relative $S{\alpha}$, absolute ${\alpha}$, relative ${\alpha}$, absolute ${\beta}$, relative ${\beta}$, absolute $\gamma$, relative $\gamma$, absolute $F{\alpha}$, relative $F{\alpha}$, absolute SMR, relative SMR, $SMR/{\theta}$, $SMR+M{\beta}/{\theta}$, absolute $H{\beta}$, relative $H{\beta}$, $H{\beta}/{\alpha}$, absolute $M{\beta}$, relative $M{\beta}$, SEF50, ASEF50) and ten index of Vibraimage(Aggression, Stress, Tension/Anxiety, Suspect, Balance, Charm, Energy, Self regulation, Inhibition, Neuroticism). As a result, I was found that relative ${\gamma}$ index of EEG and neuroticism index of Vibraimage have a high correlation as (${\pm}$).414 and (${\pm}$).424.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.