This paper describes a preliminary work on prosody modeling aspect of a text-to-speech system for Thai. Specifically, the model is designed to predict symbolic markers from text (i.e., prosodic phrase boundaries, accent, and intonation boundaries), and then using these markers to generate pitch, intensity, and durational patterns for the synthesis module of the system. In this paper, a novel method for annotating the prosodic structure of Thai sentences based on dependency representation of syntax is presented. The goal of the annotation process is to predict from text the rhythm of the input sentence when spoken according to its intended meaning. The encoding of the prosodic structure is established by minimizing speech disrhythmy while maintaining the congruency with syntax. That is, each word in the sentence is assigned a prosodic feature called strength dynamic which is based on the dependency representation of syntax. The strength dynamics assigned are then used to obtain rhythmic groupings in terms of a phonological unit called foot. Finally, the foot structure is used to predict the durational pattern of the input sentence. The aforementioned process has been tested on a set of ambiguous sentences, which represents various structural ambiguities involving five types of compounds in Thai.
One of the most important factor in the performance of Korean text-to-speech system is the prediction of accentual and intonational phrase boundary. The previous method of prediction shows only the 75-85% which is not proper in the practical and commercial system. Therefore, more accurate prediction must be needed in the practical system. In this study, we propose the simple and more accurate method of the prediction of AP, IP.
In this paper, we propose a new formant locus overlapping method which can effectively enhance a naturalness of synthetic speech produced by ddemisyllable based Korean text-to-speech system. At first, Korean demisyllables are divided into several number of segments which have linear formant transition characteristics. Then, database, which is composed of start point and length of each formant segments, is provided. When we synthesize speech with these demisyllable database, we concatenate each formant locus by using a proposed overlapping method which can closely simulate haman articulation mechanism. We have implemented a Korean text-to-speech system by using this method and proved that the formant loci of synthetic speech are similar to those of the natural speech. Finally, we could illustrate that the resulting spectrograms of proposed method are more similar to natural speech than those of conventional method.
코퍼스 기반 음성합성방식은 그 합성음의 자연성이 매우 우수하여 널리 사용되고 있으나 대용량의 데이터베이스 (DB)를 사용하기 때문에 그 적용분야가 매우 제한적이다. 본 연구에서는 이러한 코퍼스 기반 음성합성기의 대용량 DB 문제를 해결하기 위한 방안으로서 DB 축소 방법 대한 알고리듬을 제안하고 평가하였다. 본 논문에서는 DB 축소 알고리듬으로서 세 가지 방법을 제안하였는데, 첫 번째는 Modified K-means 군집화를 이용한 DB 축소 알고리듬이고 다음은 적절한 문장 셋을 정의하고 이 문장 셋을 합성할 때 사용된 단위들을 이용하는 방법이다. 마지막으로는 대용량 문장 셋을 정의하고 해당 문장을 음성합성하고, 음편들의 사용 빈도수를 고려하여 군집화를 하는 것이다. 세 가지 방법을 이용하여 합성 DB를 유사한 크기로 축소하였을 때, 대용량 문장 셋과 빈도를 고려한 세 번째 방법이 가장 우수한 음질을 보였다. 또한 마지막 방법은 합성음의 음질은 저하시키지 않으면서 합성 DB만을 감소시키는 성능을 보여, 제안된 방법의 타당함을 입증할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3473-3487
/
2020
In this paper, we present a new approach to creating speech animation with emotional expressions using a small set of example models. To generate realistic facial animation, two example models called key visemes and expressions are used for lip-synchronization and facial expressions, respectively. The key visemes represent lip shapes of phonemes such as vowels and consonants while the key expressions represent basic emotions of a face. Our approach utilizes a text-to-speech (TTS) system to create a phonetic transcript for the speech animation. Based on a phonetic transcript, a sequence of speech animation is synthesized by interpolating the corresponding sequence of key visemes. Using an input parameter vector, the key expressions are blended by a method of scattered data interpolation. During the synthesizing process, an importance-based scheme is introduced to combine both lip-synchronization and facial expressions into one animation sequence in real time (over 120Hz). The proposed approach can be applied to diverse types of digital content and applications that use facial animation with high accuracy (over 90%) in speech recognition.
Style is considered a pivotal construct in sociolinguistic variation studies. While previous studies have examined style in traditional forms of language such as speech, very little research has examined new and emerging styles such as computer-mediated discourse. Thus, the present study attempts to investigate style in the online communication mode of chat. In so doing, the study compares text-based online chat with speech and writing. Online chat has been previously described as a hybrid form of language that is close to speech. Here, the exact nature of online chat is elucidated by focusing on contraction use. Differential acquisition of stylistic variation is also examined according to English learning background. The empirical component consists of data from Korean speakers of English. Data is taken from a written summary, an oral interview, and a text-based online chat session. A multivariate analysis was conducted. Results indicate that online chat is indeed a hybrid form that is difficult to delineate from speech and writing. Text-based online chat shows a somewhat similar rate of contraction to speech, which confirms its hybridity.. Lastly, some implications of the study are given in terms of the learning and acquisition of style in general and in online contextual modes.
Autoregressive한 TTS 모델은 불안정성과 속도 저하라는 본질적인 문제를 안고 있다. 모델이 time step t의 데이터를 잘못 예측했을 때, 그 뒤의 데이터도 모두 잘못 예측하는 것이 불안정성 문제이다. 음성 출력 속도 저하 문제는 모델이 time step t의 데이터를 예측하려면 time step 1부터 t-1까지의 예측이 선행해야 한다는 조건에서 발생한다. 본 연구는 autoregression이 야기하는 문제의 대안으로 end-to-end non-autoregressive 가속 TTS 모델을 제안한다. 본 연구의 모델은 Tacotron 2 - WaveNet 모델과 근사한 MOS, 더 높은 안정성 및 출력 속도를 보였다. 본 연구는 제안한 모델을 토대로 non-autoregressive한 TTS 모델 개선에 시사점을 제공하고자 한다.
In the present study, the intelligibility of the synthesized speech sounds was evaluated by using the psycholinguistic and fMRI techniques. In order to see the difference in recognizing words between the natural and synthesized speech sounds, word regularity and word frequency were varied. The results of Experiment1 and Experiment2 showed that the intelligibility difference of the synthesized speech comes from word regularity. In the case of the synthesized speech, the regular words were recognized slower than the irregular words, and there was smaller activation of the auditory areas in brain for the regular words than for the irregular words.
최근 신경망 기반 심층학습 알고리즘의 적용으로 고전적인 Gaussian mixture model based hidden Markov model (GMM-HMM) 음성인식기에 비해 성능이 비약적으로 향상되었다. 또한 심층학습 기법의 장점을 더욱 잘 활용하는 방법으로 언어모델링 및 디코딩 과정을 통합처리 하는 종단간 음성인식 시스템에 대한 연구가 매우 활발히 진행되고 있다. 일반적으로 종단간 음성인식 시스템은 어텐션을 사용한 여러 층의 인코더-디코더 구조로 이루어져 있다. 때문에 종단간 음성인식 시스템이 충분히 좋은 성능을 내기 위해서는 많은 양의 음성과 문자열이 함께 있는 데이터가 필요하다. 음성-문자열 짝 데이터를 구하기 위해서는 사람의 노동력과 시간이 많이 필요하여 종단간 음성인식기를 구축하는 데 있어서 높은 장벽이 되고 있다. 그렇기에 비교적 적은 양의 음성-문자열 짝 데이터를 이용하여 종단간 음성인식기의 성능을 향상하는 선행연구들이 있으나, 음성 단일 데이터나 문자열 단일 데이터 한쪽만을 활용하여 진행된 연구가 대부분이다. 본 연구에서는 음성 또는 문자열 단일 데이터를 함께 이용하여 종단간 음성인식기가 다른 도메인의 말뭉치에서도 좋은 성능을 낼 수 있도록 하는 준교사 학습 방식을 제안했으며, 성격이 다른 도메인에 적응하여 제안된 방식이 효과적으로 동작하는지 확인하였다. 그 결과로 제안된 방식이 타깃 도메인에서 좋은 성능을 보임과 동시에 소스 도메인에서도 크게 열화되지 않는 성능을 보임을 알 수 있었다.
본 논문은 한국전자통신연구소 음성응용연구실에서 개발한 문자-음성변환 시스팀(Text-to-Speech Conversion System)의 음질개선 연구의 일환으로 Phoneme-Balanced Words 110개에 대해서 개선전 시스팀(V.1)과 개선 후 시스팀(v.2)을 대상으로 각각 실시한 명료도 실험결과에 대하여 기술하고 있다. 본 실험의 목적은 연구개발자 입장에서 합성음 개선에 대한 정량적 성과 및 문제점 파악을 위한 진단형 평가이며 남자 5명, 여자 5명을 대상으로 1회 실시한 청취 실험결과 V.1에 대해서는 최저 37.3%(41개) ~ 최고 55.5%(61개)이고, V.2에 대해서는 최고 39.1%(43개) ~ 최고 60.9%(67개) 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.