• Title/Summary/Keyword: Speech signal processing

Search Result 331, Processing Time 0.032 seconds

A Study on Pitch Period Detection of Speech Signal Using Modified AMDF (변형된 AMDF를 이용한 음성 신호의 피치 주기 검출에 관한 연구)

  • Seo, Hyun-Soo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.515-519
    • /
    • 2005
  • Pitch period that is a important factor in speech signal processing is used in various applications such as speech recognition, speaker identification, speech analysis and synthesis. So many pitch detection algoritms have been studied until now. AMDF which is one of pitch period detection algorithms chooses the time interval from valley point to valley point as pitch period. In selection of valley point to detect pitch period, complexity of the algoritm is increased. So in this paper we proposed the simple algorithm using modified AMDF that detects global minimum valley point as pitch period of speech signal and compared existing methods with it through simulation.

  • PDF

An Interdisciplinary Study of A Leaders' Voice Characteristics: Acoustical Analysis and Members' Cognition

  • Hahm, SangWoo;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4849-4865
    • /
    • 2020
  • The traditional roles of leaders are to influence members and motivate them to achieve shared goals in organizations. However, leaders such as top managers and chief executive officers, in practice, do not always directly meet or influence other company members. In fact, they tend to have the greatest impact on their members through formal speeches, company procedures, and the like. As such, official speech is directly related to the motivation of company employees. In an official speech, not only the contents of the speech, but also the voice characteristics of the speaker have an important influence on listeners, as the different vocal characteristics of a person can have different effects on the listener. Therefore, according to the voice characteristics of a leader, the cognition of the members may change, and, the degree to which the members are influenced and motivated will be different. This study identifies how members may perceive a speech differently according to the different voice characteristics of leaders in formal speeches. Further, different perceptions about voices will influence members' cognition of the leader, for example, in how trustworthy they appear. The study analyzed recorded speeches of leaders, and extracted features of their speaking style through digital speech signal analysis. Then, parameters were extracted and analyzed by the time domain, frequency domain, and spectrogram domain methods. We also analyzed the parameters for use in Natural Language Processing. We investigated which leader's voice characteristics had more influence on members or were more effective on them. A person's voice characteristics can be changed. Therefore, leaders who seek to influence members in formal speeches should have effective voice characteristics to motivate followers.

Speech Processing System Using a Noise Reduction Neural Network Based on FFT Spectrums

  • Choi, Jae-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • This paper proposes a speech processing system based on a model of the human auditory system and a noise reduction neural network with fast Fourier transform (FFT) amplitude and phase spectrums for noise reduction under background noise environments. The proposed system reduces noise signals by using the proposed neural network based on FFT amplitude spectrums and phase spectrums, then implements auditory processing frame by frame after detecting voiced and transitional sections for each frame. The results of the proposed system are compared with the results of a conventional spectral subtraction method and minimum mean-square error log-spectral amplitude estimator at different noise levels. The effectiveness of the proposed system is experimentally confirmed based on measuring the signal-to-noise ratio (SNR). In this experiment, the maximal improvement in the output SNR values with the proposed method is approximately 11.5 dB better for car noise, and 11.0 dB better for street noise, when compared with a conventional spectral subtraction method.

A Merging Algorithm with the Discrete Wavelet Transform to Extract Valid Speech-Sounds (이산 웨이브렛 변환을 이용한 유효 음성 추출을 위한 머징 알고리즘)

  • Kim, Jin-Ok;Hwang, Dae-Jun;Paek, Han-Wook;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.289-294
    • /
    • 2002
  • A valid speech-sound block can be classified to provide important information for speech recognition. The classification of the speech-sound block comes from the MRA(multi-resolution analysis) property of the DWT(discrete wavelet transform), which is used to reduce the computational time for the pre-processing of speech recognition. The merging algorithm is proposed to extract valid speech-sounds in terms of position and frequency range. It needs some numerical methods for an adaptive DWT implementation and performs unvoiced/voiced classification and denoising. Since the merging algorithm can decide the processing parameters relating to voices only and is independent of system noises, it is useful for extracting valid speech-sounds. The merging algorithm has an adaptive feature for arbitrary system noises and an excellent denoising SNR(signal-to-nolle ratio).

A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction (한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구)

  • ;Jeong, Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.46-63
    • /
    • 1995
  • This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.

  • PDF

A Study on Performance Improvement Method for the Multi-Model Speech Recognition System in the DSR Environment (DSR 환경에서의 다 모델 음성 인식시스템의 성능 향상 방법에 관한 연구)

  • Jang, Hyun-Baek;Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.137-142
    • /
    • 2010
  • Although multi-model speech recognizer has been shown to be quite successful in noisy speech recognition, the results were based on general speech front-ends which do not take into account noise adaptation techniques. In this paper, for the accurate evaluation of the multi-model based speech recognizer, we adopted a quite noise-robust speech front-end, AFE, which was proposed by the ETSI for the noisy DSR environment. For the performance comparison, the MTR which is known to give good results in the DSR environment has been used. Also, we modified the structure of the multi-model based speech recognizer to improve the recognition performance. N reference HMMs which are most similar to the input noisy speech are used as the acoustic models for recognition to cope with the errors in the selection of the reference HMMs and the noise signal variability. In addition, multiple SNR levels are used to train each of the reference HMMs to improve the robustness of the acoustic models. From the experimental results on the Aurora 2 databases, we could see better recognition rates using the modified multi-model based speech recognizer compared with the previous method.

Speech syntheis engine for TTS (TTS 적용을 위한 음성합성엔진)

  • 이희만;김지영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1443-1453
    • /
    • 1998
  • This paper presents the speech synthesis engine that converts the character strings kept in a computer memory into the synthesized speech sounds with enhancing the intelligibility and the naturalness by adapting the waveform processing method. The speech engine using demisyllable speech segments receives command streams for pitch modification, duration and energy control. The command based engine isolates the high level processing of text normalization, letter-to-sound and the lexical analysis and the low level processing of signal filtering and pitch processing. The TTS(Text-to-Speech) system implemented by using the speech synthesis engine has three independent object modules of the Text-Normalizer, the Commander and the said Speech Synthesis Engine those of which are easily replaced by other compatible modules. The architecture separating the high level and the low level processing has the advantage of the expandibility and the portability because of the mix-and-match nature.

  • PDF

Voice Activity Detection Based on Signal Energy and Entropy-difference in Noisy Environments (엔트로피 차와 신호의 에너지에 기반한 잡음환경에서의 음성검출)

  • Ha, Dong-Gyung;Cho, Seok-Je;Jin, Gang-Gyoo;Shin, Ok-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.768-774
    • /
    • 2008
  • In many areas of speech signal processing such as automatic speech recognition and packet based voice communication technique, VAD (voice activity detection) plays an important role in the performance of the overall system. In this paper, we present a new feature parameter for VAD which is the product of energy of the signal and the difference of two types of entropies. For this end, we first define a Mel filter-bank based entropy and calculate its difference from the conventional entropy in frequency domain. The difference is then multiplied by the spectral energy of the signal to yield the final feature parameter which we call PEED (product of energy and entropy difference). Through experiments. we could verify that the proposed VAD parameter is more efficient than the conventional spectral entropy based parameter in various SNRs and noisy environments.

Relationship between Speech Perception in Noise and Phonemic Restoration of Speech in Noise in Individuals with Normal Hearing

  • Vijayasarathy, Srikar;Barman, Animesh
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.167-173
    • /
    • 2020
  • Background and Objectives: Top-down restoration of distorted speech, tapped as phonemic restoration of speech in noise, maybe a useful tool to understand robustness of perception in adverse listening situations. However, the relationship between phonemic restoration and speech perception in noise is not empirically clear. Subjects and Methods: 20 adults (40-55 years) with normal audiometric findings were part of the study. Sentence perception in noise performance was studied with various signal-to-noise ratios (SNRs) to estimate the SNR with 50% score. Performance was also measured for sentences interrupted with silence and for those interrupted by speech noise at -10, -5, 0, and 5 dB SNRs. The performance score in the noise interruption condition was subtracted by quiet interruption condition to determine the phonemic restoration magnitude. Results: Fairly robust improvements in speech intelligibility was found when the sentences were interrupted with speech noise instead of silence. Improvement with increasing noise levels was non-monotonic and reached a maximum at -10 dB SNR. Significant correlation between speech perception in noise performance and phonemic restoration of sentences interrupted with -10 dB SNR speech noise was found. Conclusions: It is possible that perception of speech in noise is associated with top-down processing of speech, tapped as phonemic restoration of interrupted speech. More research with a larger sample size is indicated since the restoration is affected by the type of speech material and noise used, age, working memory, and linguistic proficiency, and has a large individual variability.

Relationship between Speech Perception in Noise and Phonemic Restoration of Speech in Noise in Individuals with Normal Hearing

  • Vijayasarathy, Srikar;Barman, Animesh
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.167-173
    • /
    • 2020
  • Background and Objectives: Top-down restoration of distorted speech, tapped as phonemic restoration of speech in noise, maybe a useful tool to understand robustness of perception in adverse listening situations. However, the relationship between phonemic restoration and speech perception in noise is not empirically clear. Subjects and Methods: 20 adults (40-55 years) with normal audiometric findings were part of the study. Sentence perception in noise performance was studied with various signal-to-noise ratios (SNRs) to estimate the SNR with 50% score. Performance was also measured for sentences interrupted with silence and for those interrupted by speech noise at -10, -5, 0, and 5 dB SNRs. The performance score in the noise interruption condition was subtracted by quiet interruption condition to determine the phonemic restoration magnitude. Results: Fairly robust improvements in speech intelligibility was found when the sentences were interrupted with speech noise instead of silence. Improvement with increasing noise levels was non-monotonic and reached a maximum at -10 dB SNR. Significant correlation between speech perception in noise performance and phonemic restoration of sentences interrupted with -10 dB SNR speech noise was found. Conclusions: It is possible that perception of speech in noise is associated with top-down processing of speech, tapped as phonemic restoration of interrupted speech. More research with a larger sample size is indicated since the restoration is affected by the type of speech material and noise used, age, working memory, and linguistic proficiency, and has a large individual variability.