• Title/Summary/Keyword: Speech feature

Search Result 712, Processing Time 0.028 seconds

Performance Comparison of Feature Parameters and Classifiers for Speech/Music Discrimination (음성/음악 판별을 위한 특징 파라미터와 분류기의 성능비교)

  • Kim Hyung Soon;Kim Su Mi
    • MALSORI
    • /
    • no.46
    • /
    • pp.37-50
    • /
    • 2003
  • In this paper, we evaluate and compare the performance of speech/music discrimination based on various feature parameters and classifiers. As for feature parameters, we consider High Zero Crossing Rate Ratio (HZCRR), Low Short Time Energy Ratio (LSTER), Spectral Flux (SF), Line Spectral Pair (LSP) distance, entropy and dynamism. We also examine three classifiers: k Nearest Neighbor (k-NN), Gaussian Mixure Model (GMM), and Hidden Markov Model (HMM). According to our experiments, LSP distance and phoneme-recognizer-based feature set (entropy and dunamism) show good performance, while performance differences due to different classifiers are not significant. When all the six feature parameters are employed, average speech/music discrimination accuracy up to 96.6% is achieved.

  • PDF

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

Feature Compensation Combining SNR-Dependent Feature Reconstruction and Class Histogram Equalization

  • Suh, Young-Joo;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.753-755
    • /
    • 2008
  • In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio-dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Experimental results from the Aurora 2 task confirm the superiority of the proposed approach for acoustic feature compensation.

  • PDF

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

A Design of Speech Feature Vector Extractor using TMS320C31 DSP Chip (TMS DSP 칩을 이용한 음성 특징 벡터 추출기 설계)

  • 예병대;이광명;성광수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2212-2215
    • /
    • 2003
  • In this paper, we proposed speech feature vector extractor for embedded system using TMS 320C31 DSP chip. For this extractor, we used algorithm using cepstrum coefficient based on LPC(Linear Predictive Coding) that is reliable algorithm to be is widely used for speech recognition. This system extract the speech feature vector in real time, so is used the mobile system, such as cellular phones, PDA, electronic note, and so on, implemented speech recognition.

  • PDF

A Preliminary Study on Correlation between Voice Characteristics and Speech Features (목소리 특성의 주관적 평가와 음성 특징과의 상관관계 기초연구)

  • Han, Sung-Man;Kim, Sang-Beom;Kim, Jong-Yeol;Kwon, Chul-Hong
    • Phonetics and Speech Sciences
    • /
    • v.3 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Sasang constitution medicine utilizes voice characteristics to diagnose a person's constitution. To classify Sasang constitutional groups using speech information technology, this study aims at establishing the relationship between Sasang constitutional groups and their corresponding voice characteristics by investigating various speech feature variables. The speech variables include features related to speech source and vocal tract filter. Experimental results show that statistically significant correlation between voice characteristics and some speech feature variables is observed.

  • PDF

Performance Comparison of Feature Parameters and Classifiers for Speech/Music Discrimination (음성과 음악 분류를 위한 특징 파라미터와 분류 방법의 성능비교)

  • Kim Su Mi;Kim Hyung Soon
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.149-152
    • /
    • 2003
  • In this paper, we present a performance comparison of feature parameters and classifiers for speech/music discrimination. Experiments were carried out on six feature parameters and three classifiers. It turns out that three classifiers shows similar performance. The feature set that captures the temporal and spectral structure of the signal yields good performance, while the phone-based feature set shows relatively inferior performance.

  • PDF

Feature Parameter Extraction and Speech Recognition Using Matrix Factorization (Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식)

  • Lee Kwang-Seok;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1307-1311
    • /
    • 2006
  • In this paper, we propose new speech feature parameter using the Matrix Factorization for appearance part-based features of speech spectrum. The proposed parameter represents effective dimensional reduced data from multi-dimensional feature data through matrix factorization procedure under all of the matrix elements are the non-negative constraint. Reduced feature data presents p art-based features of input data. We verify about usefulness of NMF(Non-Negative Matrix Factorization) algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment results, we confirm that proposed feature parameter is superior to MFCC(Mel-Frequency Cepstral Coefficient) in recognition performance that is used generally.

Audio Fingerprint Retrieval Method Based on Feature Dimension Reduction and Feature Combination

  • Zhang, Qiu-yu;Xu, Fu-jiu;Bai, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.522-539
    • /
    • 2021
  • In order to solve the problems of the existing audio fingerprint method when extracting audio fingerprints from long speech segments, such as too large fingerprint dimension, poor robustness, and low retrieval accuracy and efficiency, a robust audio fingerprint retrieval method based on feature dimension reduction and feature combination is proposed. Firstly, the Mel-frequency cepstral coefficient (MFCC) and linear prediction cepstrum coefficient (LPCC) of the original speech are extracted respectively, and the MFCC feature matrix and LPCC feature matrix are combined. Secondly, the feature dimension reduction method based on information entropy is used for column dimension reduction, and the feature matrix after dimension reduction is used for row dimension reduction based on energy feature dimension reduction method. Finally, the audio fingerprint is constructed by using the feature combination matrix after dimension reduction. When speech's user retrieval, the normalized Hamming distance algorithm is used for matching retrieval. Experiment results show that the proposed method has smaller audio fingerprint dimension and better robustness for long speech segments, and has higher retrieval efficiency while maintaining a higher recall rate and precision rate.

Estimation of speech feature vectors and enhancement of speech recognition performance using lip information (입술정보를 이용한 음성 특징 파라미터 추정 및 음성인식 성능향상)

  • Min So-Hee;Kim Jin-Young;Choi Seung-Ho
    • MALSORI
    • /
    • no.44
    • /
    • pp.83-92
    • /
    • 2002
  • Speech recognition performance is severly degraded under noisy envrionments. One approach to cope with this problem is audio-visual speech recognition. In this paper, we discuss the experiment results of bimodal speech recongition based on enhanced speech feature vectors using lip information. We try various kinds of speech features as like linear predicion coefficient, cepstrum, log area ratio and etc for transforming lip information into speech parameters. The experimental results show that the cepstrum parameter is the best feature in the point of reconition rate. Also, we present the desirable weighting values of audio and visual informations depending on signal-to-noiso ratio.

  • PDF