Journal of information and communication convergence engineering
/
v.10
no.2
/
pp.162-167
/
2012
This paper proposes a speech processing system based on a model of the human auditory system and a noise reduction neural network with fast Fourier transform (FFT) amplitude and phase spectrums for noise reduction under background noise environments. The proposed system reduces noise signals by using the proposed neural network based on FFT amplitude spectrums and phase spectrums, then implements auditory processing frame by frame after detecting voiced and transitional sections for each frame. The results of the proposed system are compared with the results of a conventional spectral subtraction method and minimum mean-square error log-spectral amplitude estimator at different noise levels. The effectiveness of the proposed system is experimentally confirmed based on measuring the signal-to-noise ratio (SNR). In this experiment, the maximal improvement in the output SNR values with the proposed method is approximately 11.5 dB better for car noise, and 11.0 dB better for street noise, when compared with a conventional spectral subtraction method.
Kim, Doh-Suk;Jeong, Jae-Hoon;Lee, Soo-Young;Kil, Rhee M.
The Journal of the Acoustical Society of Korea
/
v.16
no.1E
/
pp.15-23
/
1997
Zero-Crossings with Peak Amplitudes(ZCPA) model motivated by human auditory periphery was proposed to extract reliable features speech signals even in noisy environments for robust speech recognition. In this paper, some practical considerations for digital hardware implementations of the ZCPA model are addressed and evaluated for recognition of speech corrupted by several real world noises as well as white Gaussian noise. Infinite impulse response(IIR) filters which constitute the cochliar filterbank of the ZCPA are replaced by hamming bandpass filters of which frequency responses are less similar to biological neural tuning curves. Experimental results demonstrate that the detailed frequency response of the cochlear filters are not critical to performance. Also, the sensitivity of the model output to the variations in microphone gain is investigated, and results in good reliability of the ZCPA model.
In this paper, wavelet transform with multi-resolution property is used to improve the accuracy of pitch estimation of speech signal. Pitch detection of speech signal is based on the local maxima by using wavelet transform. The wavelet transform of a signal is a multiscale decomposition that is well localized in space and frequency. The proposed pitch defection algorithm is suitable for both low-pitched and high-pitched speakers.
Proceedings of the Acoustical Society of Korea Conference
/
1994.06a
/
pp.963-970
/
1994
In speech signal processing, it is very important to detect the pitch exactly. The algorithms for pitch extraction that have been proposed until now are not enough to detect the fine pitch in speech signal. Thus we propose the new algorithm which takes advantage of the G-peak extraction. It is the method to find MZCI(maximum zer-crossing interval) which is defined as cut-off bandwidth rate of LPF (low pass filter)and detect the pitch period of the voiced signals. This algorithm performs robustly with a gross error rate of 3.63% even in 0 dB SNR environment. The gross error rate for clean speech is only 0.18%. Also it is able to process all course with speed.
Proceedings of the Acoustical Society of Korea Conference
/
1991.06a
/
pp.45-49
/
1991
In area of the speech synthesis, the waveform coding with high quality are mainly used to the synthesis by analysis. However, it is difficult to applying the waveform coding to the synthesis by rule, because the parameters of this coding are not classified as either excitation parameters and vocal tract parameters. In this paper, we proposed a new pitch change method that can alter the pitch periods in the waveform coding. The proposed method expands the pitch period by the LPC synthesis method, and then the period is compressed by the waveform halving technique. Thus, it is possible that the waveform coding is carried out the synthesis by rule in speech processing.
Hung Phan Duy;Lan Huong Nguyen Thi;Ngoc Yen Pham Thi;Castelli Eric
Proceedings of the IEEK Conference
/
summer
/
pp.249-253
/
2004
Wavelet transform (WT) has attracted most engineers and scientists because of its excellent properties. The coherence of practical approach and a theoretical basis not only solves currently important problems, but also gives the potential of formulating and solving completely new problems. It has been show that multi-resolution analysis of Wavelet transforms is good solution in speech analysis and threshold of wavelet coefficients has near optimal noise reduction property for many classes of signals. This paper proposed applications of wavelet in speech processing: pitch detection, voice-unvoice (V -UV) decision, denoising with the detailed algorithms and results.
In this paper we tried to classify the pathological voice signal with severe noise component based on two different parameters, the spectral slope and the ratio of energies in the harmonic and noise components (HNR), The spectral slope is obtained by using a curve fitting method and the HNR is computed in cepstrum quefrency domain. Speech data from normal peoples and patients are collected, diagnosed and divided into three different classes (normal, relatively less noisy and severely noisy data), The mean values and the standard deviations of the spectral slope and the HNR are computed and compared with in the three kinds of data to characterize and classify the severely noisy pathological voice signals from others.
In the area of speech processing, raw signals used to be presented into 2D format. However, such kind of presentation methods have limitation to extract characteristics from the signal because of the presentation method. Generally, not much information can be detected from the 2D signal. Strange attractor in the field of chaos theory provides a 3D presentation method. In the area of recognition problem, signal presentation method is very important because good features can be detected from a good presentation. This paper discusses a new feature extraction method that extracts features from a cycle of the strange attractor. A neural network is used to check whether the method extracts suitable features or not. The result shows very good points that can be applied to some areas of signal processing.
In the area of speech processing, raw signals used to be presented in 2D format and different kinds of algorithms use the format to solve their problems. However, such kinds of presentation methods have limitations to extract characteristics from the signal, even though the algorithms are quiet good. The basic reason is that not much information can be detected from the 2D signal. Strange attractor in the field of chaos theory provides the 3D presentation method. In the area of the recognition problem, signal construction method is very important because good features can be detected from a good shape of attractors. This paper discusses a new presentation method that can be used to construct strange attractor in a different way. Normal strange attractor uses time-delay idea while the new method uses time-delay and vector average. This method provides us good information to be applied to speaker recognition problem.
In this paper, sample selective RLS(SSRLS) method is proposed, which aims to eliminate the influence of pitch bias. Its basic concepts are as follows. First it extracts the open glottis interval by using the residual signals, then estimates the formant values from the selected speech samples excluding above open glottis interval. This method has some analogy with the SSLPS, the simulation is conducted upon the synthetic and real speech. From these results, we find more usefulness of the proposed method than the conventional ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.