Conventional time-scale modification methods have the problem that as the modification rate gets higher the time-scale modified speech signal becomes less intelligible, because they ignore the effect of articulation rate on speech characteristics. Results of research on speech perception show that the timing information of transient portions of a speech signal plays an important role in discriminating among different speech sounds. Inspired by this fact, we propose a novel scheme for modifying the time-scale of speech. In the proposed scheme, the timing information of the transient portions of speech is preserved, while the steady portions of speech are compressed or expanded somewhat excessively for maintaining overall time-scale change. In order to identify the transient and steady portions of a speech signal, we employ a simple method using LPC cepstral distance between neighboring frames. The result of the subjective preference test indicates that the proposed method produces performance superior to that of the conventional SOLA method, especially for very fast playback case.
음성신호를 대상으로 하는 연구 분야에서 신경회로망은 주로 음성인식 등의 카테고리 분류의 목적으로 사용되며 신호처리의 응용에도 유망하다. 따라서 본 논문에서는 신경회로망에 시간구조를 취한 시간지연 신경회로망을 이용하여 잡음이 중첩된 음성신호의 공간으로부터 잡음이 없는 음성신호의 공간으로 사상을 실행함으로써 잡음을 제거하는 것을 목적으로 한다. 본 논문은 푸리에 변환의 진폭성분을 복원하는 잡음제거의 알고리즘을 사용하여 백색잡음 및 유색잡음에 대해서 본 수법의 유효성을 확인한다.
In speech signal processing, it Is very important to detect the pitch exactly in speech recognition, synthesis and analysis. but, it is very difficult to pitch detection from speech signal because of formant and transition amplitude affect. therefore, in this paper, we proposed a pitch detection using the spectrum flattening techniques. Spectrum flattening is to eliminate the formant and transition amplitude affect. In time domain, positive center clipping is process in order to emphasize pitch period with a glottal component of removed vocal tract characteristic. And rough formant envelope is computed through peak-fitting spectrum of original speech signal in frequency domain. As a results, well get the flattened harmonics waveform with the algebra difference between spectrum of original speech signal and smoothed formant envelope. After all, we obtain residual signal which is removed vocal tract element The performance was compared with LPC and Cepstrum, ACF 0wing to this algorithm, we have obtained the pitch information improved the accuracy of pitch detection and gross error rate is reduced in voice speech region and in transition region of changing the phoneme.
The MMSE-STSA based speech enhancement algorithm is widely used as a preprocessing for noise robust speech recognition. It weighs the gain of each spectral bin of the noisy speech using the estimate of noise and signal power spectrum. In this paper, we investigate the influence of parameters used to estimate the speech signal and noise power in MMSE-STSA upon the recognition performance of noisy speech. For experiments, we use the Aurora2 DB which contains noisy speech with subway, babble, car, and exhibition noises. The HTK-based continuous HMM system is constructed for recognition experiments. Experimental results are presented and discussed with our findings.
음성 신호처리 환경에서 잡음이 섞인 신호를 개선할 목적으로 음성향상 기법이 많이 이용되고 있다. 잡음추정 알고리즘은 변화하는 환경에 빠르게 적응할 수 있어야 하며 음성신호의 영향을 줄이기 위해 음성신호가 존재하지 않는 구간에서만 잡음의 파워를 갱신한다. 이러한 방법은 음성구간검출이 선행되어야 한다. 그러나 잡음에 열화된 음성신호에 묵음구간이 존재하지 않을 경우, 위와 같이 음성검출을 통한 묵음구간에서의 잡음 추정 방법 및 SNR 추정 방법이 적용될 수 없다. 본 논문에서는 묵음구간이 존재하지 않는 연속음성신호에서 SNR을 추정하는 기법을 제안한다. 유성음의 안정구간에서는 단구간 내 피치의 변화가 매우 작아 피치주기에 따른 음성신호의 파형이 유사하게 나타난다. 따라서 잡음이 음성에 부가되었을 때 피치주기에 따른 인접파형의 유사도를 통해 SNR을 추정한다. 무성음에서는 잡음의 영향이 수신신호의 성도성분 추정에 영향을 미치기 때문에 잡음환경에서 추정된 성도성분과 수신신호 스펙트럼 간의 거리를 이용하여 SNR을 추정한다. 마지막으로, 음성신호의 에너지가 유성음에 대부분 분포하기 때문에, 부가성 잡음 환경에서 유성음의 에너지를 음성신호의 에너지로 근사화하여 SNR을 추정할 수 있다.
음성 인식에서 기존의 음성 특징 추출 방법은 명확하지 않은 스레숄드 값으로 인해 부정확한 음성 인식률을 가진다. 본 연구에서는 음성과 비음성에 대한 특징 추출을 묵음 특징 정규화를 융합한 음성 인식 성능 향상을 위한 방법을 모델링 한다. 제안한 방법에서는 잡음의 영향을 최소화하여 모델을 구성하였고, 각 음성 프레임에 대해 음성 신호 특징을 추출하여 음성 인식 모델을 구성하였고, 이를 묵음 특징 정규화를 융합하여 에너지 스펙트럼을 엔트로피와 유사하게 표현하여 원래의 음성 신호를 생성하고 음성의 특징이 잡음을 적게 받도록 하였다. 셉스트럼에서 음성과 비음성 분류의 기준 값을 정하여 신호 대 잡음 비율이 낮은 신호에서 묵음 특징 정규화로 성능을 향상하였다. 논문에서 제시하는 방법의 성능 분석은 HMM과 CHMM을 비교하여 결과를 보였으며, 기존의 HMM과 CHMM을 비교한 결과 음성 종속 단계에서는 2.1%p의 인식률 향상이 있었으며, 음성 독립 단계에서는 0.7%p 만큼의 인식률 향상이 있었다.
본 논문에서는 전화가입자에게 보다 향상된 여러 가지 음성 서비스를 제공하기 위한 음성 처리 시스템을 구현하였다. 음성 신호처리만을 수행하는 전용 보드를 개발하고 하나의 마스터 보드가 여러 장의 DSP(Digital Signal Processing) 보드를 제어하여 음성의 저장과 재생기능을 수행하는 시스템을 다중 보드 구성에 적합한 방식인 VME버스를 사용하여 하드웨어를 구성하였다. 마스터 보드로서는 CPU30 보드를 사용하였고 DSP 보드로는 음성 입출력을 위한 전용 하드웨어인 SPM(Signal Processing Module) 보드를 제작하여 시스템 성능 평가를 하였다.
In the study for effective speech control we designed a personal computer system with A/D converter in which the speech signal is transformed by digital data displayed graphically on the moniter and with a D/A converter in which the digital data is transformed into speech signal which people can hear. We analyzed the character of the speech signal produced by the system. We designed the adaptive noise cancel algorithm so that noise and Interference are cancelled whenever the speech signal is recognized by the computer system. This is a basic system for artificial Intelligence.
Based on the chaos theory, a new method of presentation of speech signal has been presented in this paper. This new method can be used for pattern matching such as speaker recognition. The expressions of attractors are represented very well by the logistic maps that show the chaos phenomena. In the speaker recognition field, a speaker's vocal habit could be a very important matching parameter. The attractor configuration using change value of speech signal can be utilized to analyze the influence of voice undulations at a point on the vocal loudness scale to the next point. The attractors arranged by the method could be used in research fields of speech recognition because the attractors also contain unique information for each speaker.
음성 인식 분야에서 DNN이 적용됨에 따라 음성 인식의 이용이 증대되고 있으나 기존의 GMM 보다 병렬 훈련에 대한 계산의 양이 많아야 되며, 데이터의 양이 적으면 오버피팅이 발생한다. 이를 해결하기 위해 데이터의 양이 작은 경우에도 강인한 음성 특징 추출과 음성 신호 잡음 제거에 효율적인 방안을 제시한다. 음성 특징 추출은 음성에 대한 프레임 에너지의 차이와 음성 신호에 영향을 받는 영 교차율과 레벨 교차율을 적용하여 음성 에너지의 효율적 추출을 한다. 또한, 잡음 제거를 위해 음성 신호에 대한 검출에서 음성의 고유 특성을 유지하면서 음성 정보 손상이 적은 평균 예측 LMS 필터를 개선하여 음성 신호의 잡음을 제거하여 데이터양이 적은 경우의 문제를 해결한다. 개선된 LMS 필터는 입력 신호에 대한 활성 파라미터 임계치를 조정하여 입력된 음성 신호에 대한 잡음을 처리하는 방법을 사용한다. 본 논문에서 제안한 방법을 사용하여 기존의 프레임 에너지를 이용한 방법과 비교한 결과 음성의 시작점의 오차율은 7%, 끝나는 점 오차율에서 11% 향상된 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.