• 제목/요약/키워드: Speech Recognition Technology

검색결과 530건 처리시간 0.03초

SVM Based Speaker Verification Using Sparse Maximum A Posteriori Adaptation

  • Kim, Younggwan;Roh, Jaeyoung;Kim, Hoirin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권5호
    • /
    • pp.277-281
    • /
    • 2013
  • Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.

  • PDF

이중채널 잡음음성인식을 위한 공간정보를 이용한 통계모델 기반 음성구간 검출 (Statistical Model-Based Voice Activity Detection Using Spatial Cues for Dual-Channel Noisy Speech Recognition)

  • 신민화;박지훈;김홍국
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.150-151
    • /
    • 2010
  • 본 논문에서는 잡음환경에서의 이중채널 음성인식을 위한 통계모델 기반 음성구간 검출 방법을 제안한다. 제안된 방법에서는 다채널 입력 신호로부터 얻어진 공간정보를 이용하여 음성 존재 및 부재 확률모델을 구하고 이를 통해 음성구간 검출을 행한다. 이때, 공간정보는 두 채널간의 상호 시간 차이와 상호 크기 차이로, 음성 존재 및 부재 확률은 가우시안 커널 밀도 기반의 확률모델로 표현된다. 그리고 음성구간은 각 시간 프레임 별 음성 존재 확률 대비 음성 부재 확률의 비를 추정하여 검출된다. 제안된 음성구간 검출 방법의 평가를 위해 검출된 구간만을 입력으로 하는 음성인식 성능을 측정한다. 실험결과, 제안된 공간정보를 이용하는 통계모델 기반의 음성구간 검출 방법이 주파수 에너지를 이용하는 통계모델 기반의 음성구간 검출 방법과 주파수 스펙트럼 밀도 기반 음성구간 검출 방법에 비해 각각 15.6%, 15.4%의 상대적 오인식률 개선을 보였다.

  • PDF

건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구 (A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces)

  • 강태욱
    • 한국BIM학회 논문집
    • /
    • 제13권3호
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

승마재활 치료에 대한 자폐성 장애 아동 부모의 인식도 조사 (A Study on Recognition Degree of horse therapy for Autistic Disorder's parents)

  • 이근민;김소영;권상남
    • 재활복지공학회논문지
    • /
    • 제6권1호
    • /
    • pp.75-81
    • /
    • 2012
  • 본 연구는 자폐성 장애 아동의 승마재활 치료에 가장 영향을 미치는 학부모의 인식은 어느 정도이며 치료효과에 대한 목적의식은 어떠한지 또한 앞으로 재활승마 치료에 대해 가지는 기대에 대해 알아보고자 하였다. 자폐성 장애 아동의 부모로 100명을 연구대상으로 설문지를 연구도구로 사용하였다. 분석방법은 빈도분석(Frequency Analysis), 교차분석Chi-square Analysis)을 활용하여 각각 분석하였다. 재활승마 치료에 대한 학부모의 인지도에서 재활승마에 대한 인식이 있고, 아동이 재활승마의 경험이 없으며, 6세~10세 학부모의 응답에서 재활승마가 효과가 있을 것이라고 응답하였다. 이해도에서 재활승마는 주로 말을 타는 신체운동이고, 치료와 운동을 겸비한 전문영역으로 구체적인 도움을 주는 방법이라고 하였으며, 재활승마는 바람직하지 못한 행동을 교정 및 개선하는 방법으로 이용되고 재활기관에서 재활승마가 필요한 것으로 이해하고 있었다. 기대도에서 재활승마 치료사가 갖추어야 할 가장 중요한 요소는 치료학(작업치료, 물리치료, 언어치료) 전공자여야 한다고 나왔고, 재활승마는 개별치료, 주 2~3회가 적당하다고 하였다.

  • PDF

짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망 (Deep neural networks for speaker verification with short speech utterances)

  • 양일호;허희수;윤성현;유하진
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.501-509
    • /
    • 2016
  • 본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.

재실자 활동량 산출을 위한 딥러닝 기반 선행연구 동향 (Research Trends for the Deep Learning-based Metabolic Rate Calculation)

  • 박보랑;최은지;이효은;김태원;문진우
    • KIEAE Journal
    • /
    • 제17권5호
    • /
    • pp.95-100
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate the prior art based on deep learning to objectively calculate the metabolic rate which is the subjective factor for the PMV optimum control and to make a plan for future research based on this study. Methods: For this purpose, the theoretical and technical review and applicability analysis were conducted through various documents and data both in domestic and foreign. Results: As a result of the prior art research, the machine learning model of artificial neural network and deep learning has been used in various fields such as speech recognition, scene recognition, and image restoration. As a representative case, OpenCV Background Subtraction is a technique to separate backgrounds from objects or people. PASCAL VOC and ILSVRC are surveyed as representative technologies that can recognize people, objects, and backgrounds. Based on the results of previous researches on deep learning based on metabolic rate for occupational metabolic rate, it was found out that basic technology applicable to occupational metabolic rate calculation technology to be developed in future researches. It is considered that the study on the development of the activity quantity calculation model with high accuracy will be done.

지각적 표현에 기초한 비음 인식에 관한 연구 (Nasal Consonants Recognition Based on the Perceptual Representation)

  • 김기철;조정완
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1989년도 한글날기념 학술대회 발표논문집
    • /
    • pp.120-125
    • /
    • 1989
  • 음성 신호에는 언어정보이외에 여러 요인에 의한 정보가 포함되어 있어서, 문자와 일대일로 대응되는 분절을 정확하게 검출하기가 어렵다. 본 연구에서는 선형 예측계수 (LPC) 스펙트럼의 첨두 부분을 강조한 이진 (binary) 스펙트럼을 제안하고, 이를 바탕으로 음의 안정영역과 천이영역을 통합하여 음향특징을 추출하고자 한다. 각 영역의 특징은 이진 스펙트럼을 누적하여 구하며, 통합적인 특징은 각 영역의 특징을 결합한 관계적 특징으로 나타낸다. 제 2 차 포르만트 주파수의 궤적을 관계적 특징으로 하여, 양순 비음과 치조 비음을 구별한 결과, 모음의 문맥과 화자에 비교적 독립적인 인식결과를 얻을 수 있었다. 또한 이진 스펙트럼이 원래의 스펙트럼에 포함된 정보를 유지하는지 검토하기 위해, 같은 거리척도 (distance measure) 에 의해 인식 실험한 결과 이진 스펙트럼의 성능이 오히려 우수하게 나타났으며, 관계적 이진 스펙트럼의 경우 화자에 따른 변화가 더욱 적었다. 음성에 백색 잡음 (Gaussian white noise)을 더하여 잡음음성 (noisy speech) 을 만든 뒤, 같은 방법으로 실험한 결과도 유사한 인식결과를 얻을 수 있어 제안된 이진 스펙트럼의 유효성을 확인하였다.

  • PDF

연속음성인식 후처리를 위한 음절 복원 rule-base시스템 (The syllable recovery rule-base system for the post-processing of a continuous speech recognition)

  • 박미성;김미진;이문희;최재혁;이상조
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.379-385
    • /
    • 1998
  • 한국어가 연속적으로 발음될 때 여러 가지 음운 변동현상이 일어난다. 이것은 한국어 연속음성 인식을 어렵게 하는 주요 요인 중의 한가지이다. 본 논문은 음운변동현상이 반영된 음성 인식 문자열을 규칙에 의거하여 text 기반 문자열로 다시 복원시키고 복원 결과 후보들을 형태소 분석하여 유용한 문자열만을 최종 결과로 생성하게 하는 시스템을 구성하였다. 복원은 4가지 rule 즉, 음절 경계 종성 초성 복원 rule, 모음처리 복원 rule, 끝음절 중성 복원 rule, 한 음절처리 rule에 따라 이루어진다. 규칙 적용 과정중에 효과적인 복원을 위해 x-clustering정보를 정의 하여 사용하고, 형태소 분석기에 입력될 복원 후보수를 제한하기 위해 postfix음절 빈도정보를 구하여 사용한다.

  • PDF

NFC 기반 2 Factor 모바일 전자결제를 위한 갤러리-옥션의 사용자인증 모듈 개발 (User certification module development of Gallery-Auction for NFC-based 2 Factor mobile electronic payment)

  • 조원오;차윤석;오수희;최명수;김형종
    • 스마트미디어저널
    • /
    • 제6권3호
    • /
    • pp.29-40
    • /
    • 2017
  • 최근 NFC 기능이 탑재되어있는 스마트폰의 비중이 급속하게 많아지고 있으며, 이로 인해 NFC 관련 기술이 많은 기업들에 의해 만들어지고 있다. NFC기반 2 factor 전자결제시스템의 보안기능 향상과 새로운 서비스를 위해 갤러리-옥션을 개발하였다. XenServer를 이용해 효율적으로 서버를 관리 할 수 있도록 하였으며, 향상된 보안기능은 FIDO 인증기술을 적용하기 위해 지문인식을 통한 사용자 인증 모듈의 개발 및 TTS를 이용한 갤러리-옥션의 전자계약 음성서비스를 개발하였으며, 실제 적용을 통해 테스트 한 결과, NFC 모바일 전자결제를 통한 사용자의 편리하고 간단한 인증방식과 보안성을 강화하였다.

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.