• 제목/요약/키워드: Speech Recognition Technology

검색결과 530건 처리시간 0.022초

Approximated Posterior Probability for Scoring Speech Recognition Confidence

  • 김규홍;김회린
    • 대한음성학회지:말소리
    • /
    • 제52호
    • /
    • pp.101-110
    • /
    • 2004
  • This paper proposes a new confidence measure for utterance verification with posterior probability approximation. The proposed method approximates probabilistic likelihoods by using Viterbi search characteristics and a clustered phoneme confusion matrix. Our measure consists of the weighted linear combination of acoustic and phonetic confidence scores. The proposed algorithm shows better performance even with the reduced computational complexity than those utilizing conventional confidence measures.

  • PDF

웹상의 영상 내의 문자 인식과 음성 전환 시스템 (Text to Speech System from Web Images)

  • 안희임;정기철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.5-8
    • /
    • 2001
  • The computer programs based upon graphic user interface(GUI) became commonplace with the advance of computer technology. Nevertheless, programs for the visually-handicapped have still remained at the level of TTS(text to speech) programs and this prevents many visually-handicapped from enjoying the pleasure and convenience of the information age. This paper is, paying attention to the importance of character recognition in images, about the configuration of the system that converts text in the image selected by a user to the speech by extracting the character part, and carrying out character recognition.

  • PDF

대화음성인식 시스템 구현을 위한 기본 플랫폼 개발 (Development of a Baseline Platform for Spoken Dialog Recognition System)

  • 정민화;서정연;이용주;한명수
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.32-35
    • /
    • 2003
  • This paper describes our recent work for developing a baseline platform for Korean spoken dialog recognition. In our work, We have collected about 65 hour speech corpus with auditory transcriptions. Linguistic information on various levels such as mophology, syntax, semantics, and discourse is attached to the speech database by using automatic or semi-automatic tools for tagging linguistic information.

  • PDF

Possibililty of the Rough Set Approach in Phonetic Distinctions

  • Lee, Jae-Ik;Kim, Jeong-Kuk;Jo, Heung-Kuk;Suh, Kap-Sun
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1996년도 영남지부 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.66-69
    • /
    • 1996
  • The goal of automatic speech recognition is to study techniques and systems that enable agents such that computers and robots to accept speech input. However, this paper does not provide a concrete technology in speech recognition but propose a possible mathematical tools to be employed in that area. We introduce rough set theory and suggest the possibility of the rough set approach in phonetic distinctions.

  • PDF

MMSE Estimator 기반의 적응 콤 필터링을 이용한 잡음 제거 (Noise Reduction Using MMSE Estimator-based Adaptive Comb Filtering)

  • 박정식;오영환
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.181-190
    • /
    • 2006
  • This paper describes a speech enhancement scheme that leads to significant improvements in recognition performance when used in the ASR front-end. The proposed approach is based on adaptive comb filtering and an MMSE-related parameter estimator. While adaptive comb filtering reduces noise components remarkably, it is rarely effective in reducing non-stationary noises. Furthermore, due to the uniformly distributed frequency response of the comb-filter, it can cause serious distortion to clean speech signals. This paper proposes an improved comb-filter that adjusts its spectral magnitude to the original speech, based on the speech absence probability and the gain modification function. In addition, we introduce the modified comb filtering-based speech enhancement scheme for ASR in mobile environments. Evaluation experiments carried out using the Aurora 2 database demonstrate that the proposed method outperforms conventional adaptive comb filtering techniques in both clean and noisy environments.

  • PDF

자동차 텔레매틱스용 내장형 음성 HMI시스템 (The Human-Machine Interface System with the Embedded Speech recognition for the telematics of the automobiles)

  • 권오일
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.1-8
    • /
    • 2004
  • 자동차 텔레매틱스 용 음성 HMI(Human Machine Interface) 기술은 차량 내 음성정보기술 활용을 위하여 차량 잡음환경에 강인한 내장형 음성 기술을 통합한 음성 HMI 기반 텔레매틱스 용 DSP 시스템의 개발을 포함한다. 개발된 내장형 음성 인식엔진을 바탕으로 통합 시험을 위한 자동차 텔레매틱스 용 DSP 시스템 구현 개발을 수행하는 본 논문은 자동차용 음성 HMI의 요소 기술을 통합하는 기술 개발로 자동차용 음성 HMI 기술 개발에 중심이 되는 연구이다.

피쳐 퓨전 모듈을 이용한 콘포머 기반의 노인 음성 인식 (Conformer-based Elderly Speech Recognition using Feature Fusion Module)

  • 이민식;김지희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.39-43
    • /
    • 2023
  • 자동 음성 인식(Automatic Speech Recognition, ASR)은 컴퓨터가 인간의 음성을 텍스트로 변환하는 기술이다. 자동 음성 인식 시스템은 다양한 응용 분야에서 사용되며, 음성 명령 및 제어, 음성 검색, 텍스트 트랜스크립션, 자동 음성 번역 등 다양한 작업을 목적으로 한다. 자동 음성 인식의 노력에도 불구하고 노인 음성 인식(Elderly Speech Recognition, ESR)에 대한 어려움은 줄어들지 않고 있다. 본 연구는 노인 음성 인식에 콘포머(Conformer)와 피쳐 퓨전 모듈(Features Fusion Module, FFM)기반 노인 음성 인식 모델을 제안한다. 학습, 평가는 VOTE400(Voide Of The Elderly 400 Hours) 데이터셋으로 한다. 본 연구는 그동안 잘 이뤄지지 않았던 콘포머와 퓨전피쳐를 사용해 노인 음성 인식을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 콘포머 모델보다 높은 수준의 정확도를 보임으로써 노인 음성 인식을 위한 딥러닝 모델 연구에 기여했다.

  • PDF

품사 부착 말뭉치를 이용한 임베디드용 연속음성인식의 어휘 적용률 개선 (Vocabulary Coverage Improvement for Embedded Continuous Speech Recognition Using Part-of-Speech Tagged Corpus)

  • 임민규;김광호;김지환
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.181-193
    • /
    • 2008
  • In this paper, we propose a vocabulary coverage improvement method for embedded continuous speech recognition (CSR) using a part-of-speech (POS) tagged corpus. We investigate 152 POS tags defined in Lancaster-Oslo-Bergen (LOB) corpus and word-POS tag pairs. We derive a new vocabulary through word addition. Words paired with some POS tags have to be included in vocabularies with any size, but the vocabulary inclusion of words paired with other POS tags varies based on the target size of vocabulary. The 152 POS tags are categorized according to whether the word addition is dependent of the size of the vocabulary. Using expert knowledge, we classify POS tags first, and then apply different ways of word addition based on the POS tags paired with the words. The performance of the proposed method is measured in terms of coverage and is compared with those of vocabularies with the same size (5,000 words) derived from frequency lists. The coverage of the proposed method is measured as 95.18% for the test short message service (SMS) text corpus, while those of the conventional vocabularies cover only 93.19% and 91.82% of words appeared in the same SMS text corpus.

  • PDF

음성 질의 처리를 위한 의미 기반 오류 수정 (Semantic-oriented Error Correction for Spoken Query Processing)

  • 정민우;김병창;이근배
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.153-156
    • /
    • 2003
  • Voice input is often required in many new application environments such as telephone-based information retrieval, car navigation systems, and user-friendly interfaces, but the low success rate of speech recognition makes it difficult to extend its application to new fields. Popular approaches to increase the accuracy of the recognition rate have been researched by post-processing of the recognition results, but previous approaches were mainly lexical-oriented ones in post error correction. We suggest a new semantic-oriented approach to correct both semantic level and lexical errors, which is also more accurate for especially domain-specific speech error correction. Through extensive experiments using a speech-driven in-vehicle telematics information application, we demonstrate the superior performance of our approach and some advantages over previous lexical-oriented approaches.

  • PDF

SPLICE 방법에 기반한 잡음 환경에서의 음성 인식 성능 향상 (Performance Improvement ofSpeech Recognition Based on SPLICEin Noisy Environments)

  • 김종현;송화진;이종석;김형순
    • 대한음성학회지:말소리
    • /
    • 제53호
    • /
    • pp.103-118
    • /
    • 2005
  • The performance of speech recognition system is degraded by mismatch between training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE) was introduced to overcome environmental mismatch using stereo data. In this paper, we propose several methods to improve the conventional SPLICE and evaluate them in the Aurora2 task. We generalize SPLICE to compensate for covariance matrix as well as mean vector in the feature space, and thereby yielding the error rate reduction of 48.93%. We also employ the weighted sum of correction vectors using posterior probabilities of all Gaussians, and the error rate reduction of 48.62% is achieved. With the combination of the above two methods, the error rate is reduced by 49.61% from the Aurora2 baseline system.

  • PDF