• 제목/요약/키워드: Speech Learning Model

검색결과 191건 처리시간 0.026초

영한 기계번역에서의 영어 품사결정 모델 (A Model of English Part-Of-Speech Determination for English-Korean Machine Translation)

  • 김성동;박성훈
    • 지능정보연구
    • /
    • 제15권3호
    • /
    • pp.53-65
    • /
    • 2009
  • 영한 기계번역에서 영어 단어의 품사결정은 번역할 문장에 사용된 어휘의 품사 모호성을 해소하기 위해 필요하다. 어휘의 품사 모호성은 구문 분석을 복잡하게 하고 정확한 번역을 생성하는 것을 어렵게 한다. 본 논문에서는 이러한 문제점을 해결하기 위해 어휘 분석 이후 구문 분석 이전에 품사 모호성을 해소하려 하였으며 품사 모호성을 해소하기 위한 CatAmRes 모델을 제안하고 다른 품사태깅 방법과 성능 비교를 하였다. CatAmRes는 Penn Treebank 말뭉치를 이용하여 Bayesian Network를 학습하여 얻은 확률 분포와 말뭉치에서 나타나는 통계 정보를 이용하여 영어 단어의 품사를 결정을 한다. 본 논문에서 제안한 영어 품사결정 모델 CatAmRes는 결정할 품사의 적정도 값을 계산하는 Calculator와 계산된 적정도 값에 근거하여 품사를 결정하는 POSDeterminer로 구성된다. 실험에서는 CatAmRes의 동작과 성능을 테스트 하기 위해 WSJ, Brown, IBM 영역의 말뭉치에서 추출한 테스트 데이터를 이용하여 품사결정의 정확도를 평가하였다.

  • PDF

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

영어 강세 교정을 위한 주변 음 특징 차를 고려한 강조점 검출 (Prominence Detection Using Feature Differences of Neighboring Syllables for English Speech Clinics)

  • 심성건;유기선;성원용
    • 말소리와 음성과학
    • /
    • 제1권2호
    • /
    • pp.15-22
    • /
    • 2009
  • Prominence of speech, which is often called 'accent,' affects the fluency of speaking American English greatly. In this paper, we present an accurate prominence detection method that can be utilized in computer-aided language learning (CALL) systems. We employed pitch movement, overall syllable energy, 300-2200 Hz band energy, syllable duration, and spectral and temporal correlation as features to model the prominence of speech. After the features for vowel syllables of speech were extracted, prominent syllables were classified by SVM (Support Vector Machine). To further improve accuracy, the differences in characteristics of neighboring syllables were added as additional features. We also applied a speech recognizer to extract more precise syllable boundaries. The performance of our prominence detector was measured based on the Intonational Variation in English (IViE) speech corpus. We obtained 84.9% accuracy which is about 10% higher than previous research.

  • PDF

언어장애인의 스마트스피커 접근성 향상을 위한 개인화된 음성 분류 기법 (Personalized Speech Classification Scheme for the Smart Speaker Accessibility Improvement of the Speech-Impaired people)

  • 이승권;최우진;전광일
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.17-24
    • /
    • 2022
  • 음성인식 기술과 인공지능 기술을 기반으로 한 스마트스피커의 보급으로 비장애인뿐만 아니라 시각장애인이나 지체장애인들도 홈 네트워크 서비스를 연동하여 주택의 전등이나 TV와 같은 가전제품을 음성을 통해 쉽게 제어할 수 있게 되어 삶의 질이 대폭 향상되었다. 하지만 언어장애인의 경우 조음장애나 구음장애 등으로 부정확한 발음을 하게 됨으로서 스마트스피커의 유용한 서비스를 사용하는 것이 불가능하다. 본 논문에서는 스마트스피커에서 제공되는 기능 중 일부 서비스를 대상으로 언어장애인이 이용할 수 있도록 개인화된 음성분류기법을 제안한다. 본 논문에서는 소량의 데이터와 짧은 학습시간으로도 언어장애인이 구사하는 문장의 인식률과 정확도를 높여 스마트스피커가 제공하는 서비스를 실제로 이용할 수 있도록 하는 것이 목표이다. 본 논문에서는 ResNet18 모델을 fine tuning하고 데이터 증강과 one cycle learning rate 최적화 기법을 추가하여 적용하였으며, 실험을 통하여 30개의 스마트스피커 명령어 별로 10회 녹음한 후 3분 이내로 학습할 경우 음성분류 정확도가 95.2% 정도가 됨을 보였다.

딥러닝 모형을 사용한 한국어 음성인식 (Korean speech recognition using deep learning)

  • 이수지;한석진;박세원;이경원;이재용
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.213-227
    • /
    • 2019
  • 본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.

라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응 (Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition)

  • 정현재;구자현;김회린
    • 말소리와 음성과학
    • /
    • 제12권2호
    • /
    • pp.29-37
    • /
    • 2020
  • 최근 신경망 기반 심층학습 알고리즘의 적용으로 고전적인 Gaussian mixture model based hidden Markov model (GMM-HMM) 음성인식기에 비해 성능이 비약적으로 향상되었다. 또한 심층학습 기법의 장점을 더욱 잘 활용하는 방법으로 언어모델링 및 디코딩 과정을 통합처리 하는 종단간 음성인식 시스템에 대한 연구가 매우 활발히 진행되고 있다. 일반적으로 종단간 음성인식 시스템은 어텐션을 사용한 여러 층의 인코더-디코더 구조로 이루어져 있다. 때문에 종단간 음성인식 시스템이 충분히 좋은 성능을 내기 위해서는 많은 양의 음성과 문자열이 함께 있는 데이터가 필요하다. 음성-문자열 짝 데이터를 구하기 위해서는 사람의 노동력과 시간이 많이 필요하여 종단간 음성인식기를 구축하는 데 있어서 높은 장벽이 되고 있다. 그렇기에 비교적 적은 양의 음성-문자열 짝 데이터를 이용하여 종단간 음성인식기의 성능을 향상하는 선행연구들이 있으나, 음성 단일 데이터나 문자열 단일 데이터 한쪽만을 활용하여 진행된 연구가 대부분이다. 본 연구에서는 음성 또는 문자열 단일 데이터를 함께 이용하여 종단간 음성인식기가 다른 도메인의 말뭉치에서도 좋은 성능을 낼 수 있도록 하는 준교사 학습 방식을 제안했으며, 성격이 다른 도메인에 적응하여 제안된 방식이 효과적으로 동작하는지 확인하였다. 그 결과로 제안된 방식이 타깃 도메인에서 좋은 성능을 보임과 동시에 소스 도메인에서도 크게 열화되지 않는 성능을 보임을 알 수 있었다.

CTC를 이용한 LSTM RNN 기반 한국어 음성인식 시스템 (LSTM RNN-based Korean Speech Recognition System Using CTC)

  • 이동현;임민규;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.93-99
    • /
    • 2017
  • Long Short Term Memory (LSTM) Recurrent Neural Network (RNN)를 이용한 hybrid 방법은 음성 인식률을 크게 향상시켰다. Hybrid 방법에 기반한 음향모델을 학습하기 위해서는 Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM)로부터 forced align된 HMM state sequence가 필요하다. 그러나, GMM-HMM을 학습하기 위해서 많은 연산 시간이 요구되고 있다. 본 논문에서는 학습 속도를 향상하기 위해, LSTM RNN 기반 한국어 음성인식을 위한 end-to-end 방법을 제안한다. 이를 구현하기 위해, Connectionist Temporal Classification (CTC) 알고리즘을 제안한다. 제안하는 방법은 기존의 방법과 비슷한 인식률을 보였지만, 학습 속도는 1.27 배 더 빨라진 성능을 보였다.

CNN(Convolutional Neural Network) 알고리즘을 활용한 음성신호 중 비음성 구간 탐지 모델 연구 (A Study on a Non-Voice Section Detection Model among Speech Signals using CNN Algorithm)

  • 이후영
    • 융합정보논문지
    • /
    • 제11권6호
    • /
    • pp.33-39
    • /
    • 2021
  • 음성인식 기술은 딥러닝과 결합되며 빠른 속도로 발전하고 있다. 특히 음성인식 서비스가 인공지능 스피커, 차량용 음성인식, 스마트폰 등의 각종 기기와 연결되며 음성인식 기술이 산업의 특정 분야가 아닌 다양한 곳에 활용되고 있다. 이러한 상황에서 해당 기술에 대한 높은 기대 수준을 맞추기 위한 연구 역시 활발히 진행되고 있다. 그중에서 자연어처리(NLP, Natural Language Processing)분야에서 음성인식 인식률에 많은 영향을 주는 주변의 소음이나 불필요한 음성신호를 제거하는 분야에 연구가 필요한 상황이다. 이미 많은 국내외 기업에서 이러한 연구를 위해 최신의 인공지능 기술을 활용하고 있다. 그중에서 합성곱신경망 알고리즘(CNN)을 활용한 연구가 활발하게 진행되고 있다. 본 연구의 목적은 합성곱 신경망을 통해서 사용자의 발화구간에서 비음성 구간을 판별하는 것으로 5명의 발화자의 음성파일(wav)을 수집하여 학습용 데이터를 생성하고 이를 합성곱신경망을 활용하여 음성 구간과 비음성 구간을 판별하는 분류 모델을 생성하였다. 이후 생성된 모델을 통해 비음성 구간을 탐지하는 실험을 진행한 결과 94%의 정확도를 얻었다.

제한된 학습 데이터를 사용하는 End-to-End 음성 인식 모델 (End-to-end speech recognition models using limited training data)

  • 김준우;정호영
    • 말소리와 음성과학
    • /
    • 제12권4호
    • /
    • pp.63-71
    • /
    • 2020
  • 음성 인식은 딥러닝 및 머신러닝 분야에서 활발히 상용화 되고 있는 분야 중 하나이다. 그러나, 현재 개발되고 있는 음성 인식 시스템은 대부분 성인 남녀를 대상으로 인식이 잘 되는 실정이다. 이것은 음성 인식 모델이 대부분 성인 남녀 음성 데이터베이스를 학습하여 구축된 모델이기 때문이다. 따라서, 노인, 어린이 및 사투리를 갖는 화자의 음성을 인식하는데 문제를 일으키는 경향이 있다. 노인과 어린이의 음성을 잘 인식하기 위해서는 빅데이터를 구축하는 방법과 성인 대상 음성 인식 엔진을 노인 및 어린이 데이터로 적응하는 방법 등이 있을 수 있지만, 본 논문에서는 음향적 데이터 증강에 기반한 재귀적 인코더와 언어적 예측이 가능한 transformer 디코더로 구성된 새로운 end-to-end 모델을 제안한다. 제한된 데이터셋으로 구성된 한국어 노인 및 어린이 음성 인식을 통해 제안된 방법의 성능을 평가한다.

능동학습법을 이용한 한국어 대화체 문장의 효율적 의미 구조 분석 (Efficient Semantic Structure Analysis of Korean Dialogue Sentences using an Active Learning Method)

  • 김학수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권5호
    • /
    • pp.306-312
    • /
    • 2008
  • 목적 지향성 대화에서 화자의 의도는 화행과 개념열 쌍으로 구성되는 의미 구조로 근사화될 수 있다. 그러므로 지능형 대화 시스템을 구현하기 위해서는 의미 구조를 올바르게 파악하는 것이 매우 중요하다. 본 논문에서는 능동학습(active learning) 방법을 이용하여 효율적으로 의미 구조를 분석하는 모델을 제안한다. 제안 모델은 언어 분석에 따른 부담을 덜기위하여 형태소 자질들과 이전 의미 구조만을 입력 자질로 사용한다. 그리고 정확률 향상을 위하여 자연어 처리 분야에서 높은 성능을 보이고 있는 CRFs(Conditional Random Fields)를 기본 통계 모델로 사용한다. 일정 관리 영역에서 제안 모델을 실험한 결과는 기존 모델들과 비교하여 1/3 정도의 훈련데이타를 사용하고도 비슷한 정확률(화행 92.4%, 개념열 89.8%)을 나타내고 있음을 알 수 있었다.