• 제목/요약/키워드: Spectrum wavelength range

Search Result 176, Processing Time 0.024 seconds

Nondestructive Measurement of Sugar.Acid Contents in Fruits Using Spectral Reflectance (분광 반사 특성을 이용한 주요 과실의 비파괴 당.산도 측정)

  • 노상하;김우기;이종환
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.247-255
    • /
    • 1997
  • This study was conducted to develop regression models predicting sugar and acid contents in intact fruits nondestructively by using the second derivative of absorbance spectrum measured with a spectrophotometer wavelength range of 400nm to 2, 400nm. The correlation analysis was made in wavelength range of 600nm to 1, 100nm and 600nm to 2, 400nm respectively, in order to examine the feasibility of using a real time spectrophotometer, which covers the former range, in predicting sugar and acid contents. The second derivative data of the spectrum were obtained by varying smoothing size and derivative size of the original absorbance spectrum. SAS statistical package program was used for the regression analysis. The sugar contents of Fuji apple, Shingo pear md Yumyung peach could be predicted with SEPs of 0.40, 1.17 and 0.77 respectively, in the spectrum range of 600 to 1, 100nm. The highest correlation coefficient of the titratible acidity of apple was -0.45 at 2, 346nm and regression models indicated determination coefficient less than 0.47.

  • PDF

Sweeping Center Setting Automation for Wavelength Swept Laser used in SS-OCT (SS-OCT용 파장 스위핑 레이저를 위한 스위핑 중심 세팅 자동화)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.324-330
    • /
    • 2017
  • In this paper, the automation of sweeping center setting for wavelength swept laser used in SS-OCT has implemented. For 3 regions where the initial FFP-TF pass wavelength can be located, each different DC voltage pattern is applied to FFP-TF. Through its performance test to the laser, fast and exact setting to sweeping central wavelength, flat sweeping with ${\pm}0.5dB$ fluctuation range, and 10 mW average optical power were obtained. This shows that the realized automatic setting process can replace an inconvenient manual setting operation used for current wavelength swept laser. Additionally it cuts costs for optical spectrum analyzer necessary to laser spectrum monitoring.

Spectral Characteristics of 50 GHz FSR Etalon for Wide-band DWDM Application

  • Kim, Jong-Deog;Moon, Jong-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.104-107
    • /
    • 2004
  • The periodic transmission spectrum of a solid etalon for wide-band capability is analyzed both theoretically and experimentally. In the transmission spectrum with an incident area of a photodetector, the peak wavelength and transmittance are deeply dependent on the incident angle and the divergence angle of the input laser beam. A thermal adjustment for a solid etalon is an optional way to control the transmission spectrum instead of the inefficient fine-angle alignment. In the result, we present the deviations of free spectral range (FSR) by the change in angle and temperature over wide wavelength range.

Multi - channel Spectrum Analyzer for High Capacity Optical Transport Networks

  • Youn, Ji-Wook;Kim, Hyung-Joo;Lee, Jong-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.249-252
    • /
    • 2003
  • A simple multi-channel spectrum analyzer using an InGaAs array sensor and a diffraction grating is proposed and developed for high-capacity optical transport networks. With the developed multichannel spectrum analyzer, we could measure signal power, wavelength, and optical signal-to-noise ratio of each channel for multi-channel optical signals with 100 GHz and 50 GHz channel spacing, simultaneously. We could measure each channel power and wavelength with a deviation of less than 0.2 dB and 0.063 nm, respectively. We have obtained optical signal-to-noise ratio with a deviation of less than 1.0 dB compared with conventional optical spectrum analyzer in the wide input power range between -42 dBm and -27 dBm per channel.

Characteristics of Photo-conversion Glass with $Eu^{3+}$ and Its Use 1 (Glass Production and Photo-conversion Characteristics) ($Eu^{3+}$가 첨가된 광변환 유리의 특성과 효과연구 1(유리의 제조와 특성))

  • Chung, Hun-S.;Ahn, Yang-K.;Kil, Dae-S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.44-50
    • /
    • 2002
  • Photosynthesis of plants is effective in the range of 550 to 700 nm of the wavelength of solar irradiation. If the conversion of ultraviolet to the above mentioned region is possible, the photosynthesizing ability is expected to be enhanced. $Eu^{3+}$ doped soda-lime bulk and $TiO_2-SiO_2$ sol-gel coated glasses were prepared and their spectroscopic properties were studied. The absorption and emission spectra for the specimens were measured with the changes of wavelength and Eu ion concentration in the range of the wavelength of 300 to 700nm. The transmittance intensity of visible light through the bulk glass and the coated one was unchanged with the addition of Eu element. The emission spectrum intensity of $Eu^{3+}$ was found to be the maximum at 618 nm which is a transition of $^5DO{\rightarrow}^7F_2$. Additionally, it was shown that the intensity was linearly increased up to 10% of the Eu concentration.

Absorption Spectroscopy of Biological Specimens Near X-ray Absorption Edges of Constituent Elements

  • Ito, Atsushi;Shinohara, Kunio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.460-462
    • /
    • 2002
  • Absorption spectra of biological specimens in the soft X-ray region have been presented with special reference to the XANES (X-ray absorption Near Edge Structure) of constituent elements. Absorption spectrum in this wavelength region is characterized by the absorption edges from which elemental content could be derived. In addition, XANES has a characteristic profile for chemical environment around the element such as chemical bond. Using the specific absorption peak we can assign not only the chemical bond but also molecules having such a chemical bond. In the present paper, absorption spectrum of DNA was measured in the wavelength range from 1.5nm to 5nm. Spectrum of Chinese Hamster Ovary (CHO) cells was compared with the DNA spectrum. XANES were distinct at the K absorption edges of major elements, C, N and O. In the spectrum of the cells prominent peaks at the L absorption edge of minor element Ca were also detectable. XANES profiles in small local areas in a cell could also be measured in combination with X-ray microscopy. These give information about local chemical environment in a cell. XANES at the phosphorus K absorption edge in a human HeLa cell was successfully obtained corresponding to a sharp and intensive XANES peak of DNA.

  • PDF

Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier

  • Afkhami, Hossein;Mowla, Alireza;Granpayeh, Nosrat;Hormozi, Azadeh Rastegari
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • An optimal wideband gain flattened hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA) has been introduced. A new and effective optimization method called particle swarm optimization (PSO) is employed to find the optimized parameters of the EDFA/FRA. Numerous parameters which are the parameters of the erbium-doped fiber amplifier (EDFA) and the fiber Raman amplifier (FRA) define the gain spectrum of a hybrid EDFA/FRA. Here, we optimize the length, $Er^{3+}$ concentration, and pump power and wavelength of the EDFA and also pump powers and wavelengths of the FRA to obtain the flattest operating gain spectrum. Hybrid EDFA/FRA with 6-pumped- and 10-pumped-FRAs have been studied. Gain spectrum variations are 1.392 and 1.043 dB for the 6-pumped- and 10-pumped-FRAs, respectively, in the 108.5 km hybrid EDFA/FRAs, with 1 mW of input signal powers. Dense wavelength division multiplexing (DWDM) system with 60 signal channels in the wavelength range of 1529.2-1627.1 nm, i.e. the wide bandwidth of 98 nm, is studied. In this work, we have added FRA's pump wavelengths to the optimization parameters to obtain better results in comparison with the results presented in our previous works.

Implementation of an Interrogator for the Operationand Measurement of Fiber Bragg Grating Multiplexing Sensor Probes (FBG 다중화 센서 탐촉자 구동 및 측정을 위한 인터로게이터 설계 제작)

  • Kim, Ji-Dea;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • This research focuses on the development of an interrogator that operates and measures fiber Bragg grating(FBG) multiplexing sensor probes for accurate-measurement of the blade deflection in a wind power generator. We designed and fabricated an optical source and spectrum module for the interrogator. Additionally, we verified the wavelength repeatability within 0.001 nm and the wavelength stability within 1 pm of the optical source, and we experimentally determined that the wavelength scanning range was about 44.4 nm. The FBG sensor with 2 nm resolution can be extended to a performance-efficient system that measures more than 20 sensors. The implemented interrogator has 0.141 nm wavelength variations corresponding to an ambient temperature range of $0^{\circ}C$ to $70^{\circ}C$. The measurement error can be easily reduced by employing a temperature compensation algorithm. In this study, we quantitatively confirmed the accuracy and operating stability of the interrogator.

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Automatic Sweep Flattening for Wavelength Sweeping Laser of SS-OCT (SS-OCT용 파장 스위핑 레이저를 위한 자동 스위프 평탄화)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • In this paper, the automatic sweep flattening for wavelength swept laser of SS-OCT has implemented. Through its performance test applied to the laser, 50 nm flat sweeping range, ${\pm}0.5dB$ fluctuation range, 22 sec the time required, and 10 mW average optical power were obtained. This shows that the realized automatic process can replace the inconvenient manual operation used for polarization control of current sweeping laser. Additionally it cuts costs for optical spectrum analyzer necessary to sweep monitoring.