• Title/Summary/Keyword: Spectrum resource allocation

Search Result 89, Processing Time 0.023 seconds

A Fair Radio Resource Allocation Algorithm for Uplink of FBMC Based CR Systems

  • Jamal, Hosseinali;Ghorashi, Seyed Ali;Sadough, Seyed Mohammad-Sajad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1479-1495
    • /
    • 2012
  • Spectrum scarcity seems to be the most challenging issue to be solved in new wireless telecommunication services. It is shown that spectrum unavailability is mainly due to spectrum inefficient utilization and inappropriate physical layer execution rather than spectrum shortage. Daily increasing demand for new wireless services with higher data rate and QoS level makes the upgrade of the physical layer modulation techniques inevitable. Orthogonal Frequency Division Multiple Access (OFDMA) which utilizes multicarrier modulation to provide higher data rates with the capability of flexible resource allocation, although has widely been used in current wireless systems and standards, seems not to be the best candidate for cognitive radio systems. Filter Bank based Multi-Carrier (FBMC) is an evolutionary scheme with some advantages over the widely-used OFDM multicarrier technique. In this paper, we focus on the total throughput improvement of a cognitive radio network using FBMC modulation. Along with this modulation scheme, we propose a novel uplink radio resource allocation algorithm in which fairness issue is also considered. Moreover, the average throughput of the proposed FBMC based cognitive radio is compared to a conventional OFDM system in order to illustrate the efficiency of using FBMC in future cognitive radio systems. Simulation results show that in comparison with the state of the art two algorithms (namely, Shaat and Wang) our proposed algorithm achieves higher throughputs and a better fairness for cognitive radio applications.

An Heuristic for Joint Assignments of Power and Subcarriers in Cognitive Radio Networks (인지라디오 네트워크에서 전력과 부반송파 할당을 위한 휴리스틱)

  • Paik, Chun-Hyun
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.65-77
    • /
    • 2012
  • With the explosivley increasing demand in wireless telecommunication service, the shortage of radio spectrum has been worsen. The traditional approach of the current fixed spectrum allocation leads to spectrum underutilization. Recently, CR (Cognitive Radio) technologies are proposed to enhance the spectrum utilization by allocating dynamically radio resources to CR Networks. In this study, we consider a radio resource(power, subcarrier) allocation problem for OFDMA-based CRN in which a base station supports a variety of CUs (CRN Users) while avoiding the radio interference to PRN (Primary Radio Network). The problem is mathematically formulated as a general 0-1 IP problem. The optimal solution method for the IP problem requires an unrealistic execution time due to its complexity. Therefore, we propose an heuristic that gives an approximate solution within a reasonable execution time.

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

HetNet Characteristics and Models in 5G Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2022
  • The fifth generation (5G) mobile communication technology is designed to meet all communication needs. Heterogeneous networks (HetNets) are a new emerging network structure. HetNets have greater potential for radio resource reuse and better service quality than homogeneous networks since they can evolve small cells into macrocells. Effective resource allocation techniques reduce inter-user interference while optimizing the utilization of limited spectrum resources in HetNets. This article discusses resource allocation in 5G HetNets. This paper explains HetNets and how they work. Typical cell types in HetNets are summarized. Also, HetNets models are explained in the third section. The fourth component addresses radio resource control and mobility management. Moreover, future study in this subject may benefit from this article's significant insights on how HetNets function.

Throughput Enhancement of C-RAN based on Adaptive Frequency Reuse

  • Lin, Zhi-feng;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.83-85
    • /
    • 2016
  • C-RAN (Cloud Radio Access Network) structure is the most popular approach for 5G stander, it employs CoMP (Coordinated Multiple Points Transmission/Reception) to enhance frequency utilization and increase throughput for cell-edge users. C-RAN mainly includes two parts: baseband units (BBU) and remote radio heads (RRH). In this paper we propose a new resource block allocation (spectrum allocation) scheme by the permutation and combination of BBUs, and we also use the CoMP (Coordinated Multiple Points Transmission/Reception) technique according to the different environment to improve the spectrum utilization and reduce resource waste in different environment. The simulation results expound that the scheme significantly enhances throughput and improves the spectrum utilization.

Improvement of Resource Utilization by Dynamic Spectrum Hole Grouping in Wideband Spectrum Cognitive Wireless Networks (광대역 스펙트럼 인지 무선망에서 동적 스펙트럼홀 그룹핑에 의한 자원이용률 향상)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2020
  • In this paper, we propose a dynamic spectrum hole grouping method that changes the grouping range of spectrum hole according to the resources amount required by secondary users in wideband spectrum cognitive wireless networks, and then the proposed method is applied to channel allocation for the secondary user service. The proposed method can improve waste of resources in the existing static spectrum hole grouping in virtue of grouping dynamically as much the predicted spectrum holes resources as secondary users require. Simulation results show that channel allocation method with the proposed dynamic grouping outperforms that with the static grouping method in resources utilization under acceptable secondary user service performance.

Resource and Power Allocation Method for Device-to-Device Communications in a Multicell Network (다중 셀 네트워크에서 단말 간 직접 통신을 위한 자원 및 전력 할당 기법)

  • Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1986-1993
    • /
    • 2015
  • We investigate the optimal resource and power allocation for device-to-device (D2D) communications in a multicell environment. When D2D links reuse the cellular radio resources, each D2D user will interfere with a cellular link and other D2D links, in its own cell as well as in adjacent cells. Under such situation, we propose a coordinated resource allocation scheme that can handle the intercell interferences as well as the intracell interference. For a given resource allocation, we also formulate a power optimization problem and present an algorithm for finding the optimal solution. The resource and power allocation algorithms are designed to maximize the achievable rate of the D2D link, while limiting the generated interference to the cellular link. The performance of the proposed algorithms is evaluated through simulations in a multicell environment. Numerical results are presented to verify the coordination gain in the resource and power allocation.

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

Comparison of two methodologies on spectrum sharing information for unlicensed use in the 6-GHz band

  • Um, Jungsun;Kim, Bongsu;Kim, Igor;Park, Seungkeun
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.531-542
    • /
    • 2022
  • With the increasing demand for unlicensed spectrum, several regulators have been opening up the 6-GHz band for unlicensed use while ensuring compliance with the technical requirement to avoid harmful interference in the existing primary services (PSs). In this paper, we present two methodologies, a channel-based method and a frequency-based method, which are applicable to a frequency coordination system that calculates the permissible transmit power in the channels or frequencies available to a secondary service (SS). In addition, we have demonstrated that the available transmit power of an SS can be maximized by adjusting the power allocation of the assigned resource units under the condition that the channel of the SS is partially overlapped with that of the PS. Based on the analysis results, it is suggested that it would be better to utilize the two methods selectively according to the operating channel conditions of the PS and the SS.