• Title/Summary/Keyword: Spectrum matched ground motion

Search Result 8, Processing Time 0.021 seconds

Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions (스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성)

  • Kim, Jung Han;Kim, Min Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

Characteristics of Spectral Matched Ground Motions Time Histories According to Seed Ground Motion Selection (원본 지반운동 시간이력에 따른 스펙트럼 부합 시간이력의 특성)

  • Choi, Da Seul;Ji, Hae Yeon;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • According to several seismic design standards, a ground motion time history should be selected similar to the design response spectrum, or a ground motion time history should be modified by matching procedure to the design response spectrum through the time-domain method. For the response spectrum matching procedure, appropriate seed ground motions need to be selected to maintain recorded earthquake accelerogram characteristics. However, there are no specific criteria for selecting the seed ground motions for applying this methodology. In this study, the characteristics of ground motion time histories between seed motions and spectral matched motions were compared. Intensity measures used in the design were compared, and their change by spectral matching procedure was quantified. In addition, the seed ground motion sets were determined according to the response spectrum shape, and these sets analyzed the response of nonlinear and equivalent linear single degrees of freedom systems to present the seed motion selection conditions for spectral matching. As a result, several considerations for applying the time domain spectral matching method were presented.

Failure Probability of Nonlinear SDOF System Subject to Scaled and Spectrum Matched Input Ground Motion Models (배율조정 및 스펙트럼 맞춤 입력지반운동 모델에 대한 비선형 단자유도 시스템의 파손확률)

  • Kim, Dong-Seok;Koh, Hyun-Moo;Choi, Chang-Yeol;Park, Won-Suk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • In probabilistic seismic analysis of nonlinear structural system, dynamic analysis is performed to obtain the distribution of the response estimate using input ground motion time histories which correspond to a given seismic hazard level. This study investigates the differences in the distribution of the responses and the failure probability according to input ground motion models. Two types of input ground motion models are considered: real earthquake records scaled to specified intensity level and artificial input ground motion fitted to design response spectrum. Simulation results fir a nonlinear SDOF system demonstrate that the spectrum matched input ground motion produces larger failure probability than those of scaled input ground motion due to biased responses. Such tendency is more remarkable in the site of soft soil conditions. Analysis results show that such difference of failure probability is due to the conservative estimation of design response spectrum in the range of long period of ground motion.

Evaluation of the Effect of Input Motions on Earthquake-Induced Settlement of Embankment Dams (입력지진파에 따른 지진 시 필댐의 침하량 영향관계 분석)

  • Jo, Seong-Bae;Kim, Nam-Ryong;Kim, Tae Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.509-520
    • /
    • 2020
  • Currently, the criteria for input motions used in dam seismic design are clearly presented in general provisions of seismic design (KDS 17 10 00), and seismic ground motion records should be matched to the standard design response spectrum. However, the effect on the results is not assessed according to the selection of the seismic ground motion records, making it difficult to select seismic input motions. Therefore, in this study, the change in the amount of crest settlement of an embankment dam was assessed through numerical analysis after matching the seismic ground motion records of domestic and overseas earthquakes in accordance with the standard design response spectrum provided in the seismic design code (KDS 17 10 00). The results showed that the behavior of the upper part of the embankment, such as maximum acceleration at the crest and amplification through the dam, rather than the effect of free-field acceleration, had a greater effect on the amount of crest settlement. Moreover, it was confirmed that even an input seismic motion matched to the standard design response spectrum can make a difference in settlement depending on the characteristics of amplification through a dam body.

Evaluation of Ground Motion Modification Methodologies for Seismic Structural Damage (지진 구조 손상도 예측을 위한 지반 운동 수정법 평가)

  • Heo, YeongAe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2013
  • The selection of appropriate ground motions and reasonable modification are becoming increasingly critical in reliable prediction on seismic performance of structures. A widely used amplitude scaling approach is not sufficient for robust structural evaluation considering a site specific seismic hazard because only one spectral value is matched to the design spectrum typically at the structural fundamental period. Hence alternative approaches for ground motion selection and modifications have been suggested. However, there is no means to evaluate such methodologies yet. In this study, it is focused to describe the main questions resided in the amplitude scaling approach and to propose a regression model for structural damage as point of comparison. Spectrum compatible approach whose resulting spectrum matches the design spectrum at the entire range of the structural period is considered as alternative to be compared to the amplitude scaling approach. The design spectrum is generated according to ASCE7-05.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.