• Title/Summary/Keyword: Spectrum Requirement

Search Result 102, Processing Time 0.021 seconds

Differential Game Theoretic Approach for Distributed Dynamic Cooperative Power Control in Cognitive Radio Ad Hoc Networks

  • Zhang, Long;Huang, Wei;Wu, Qiwu;Cao, Wenjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3810-3830
    • /
    • 2015
  • In this paper, we investigate the differential game theoretic approach for distributed dynamic cooperative power control in cognitive radio ad hoc networks (CRANETs). First, a payoff function is defined by taking into consideration the tradeoff between the stock of accumulated power interference to the primary networks and the dynamic regulation of the transmit power of secondary users (SUs). Specifically, the payoff function not only reflects the tradeoff between the requirement for quickly finding the stable available spectrum opportunities and the need for better channel conditions, but also reveals the impact of the differentiated types of data traffic on the demand of transmission quality. Then the dynamic power control problem is modeled as a differential game model. Moreover, we convert the differential game model into a dynamic programming problem to obtain a set of optimal strategies of SUs under the condition of the grand coalition. A distributed dynamic cooperative power control algorithm is developed to dynamically adjust the transmit power of SUs under grand coalition. Finally, numerical results are presented to demonstrate the effectiveness of the proposed algorithm for efficient power control in CRANETs.

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Power Allocation for Half-duplex Relay-based D2D Communication with QoS guarantee

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1311-1324
    • /
    • 2019
  • In the traditional cellular network communication, the cellular user and the base station exchange information through the uplink channel and downlink channel. Meanwhile, device-to-device (D2D) users access the cellular network by reusing the channel resources of the cellular users. However, when cellular user channel conditions are poor, not only D2D user cannot reuse its channel resources to access the network, but also cellular user's communication needs cannot be met. To solve this problem, we introduced a novelty D2D communication mechanism in the downlink, which D2D transmitter users as half-duplex (HD) relays to assist the downlink transmission of cellular users with reusing corresponding spectrum. The optimization goal of the system is to make the cellular users in the bad channel state meet the minimum transmission rate requirement and at the same time maximize the throughput of the D2D users. In addition, i for the purpose of improving the efficiency of relay transmission, we use two-antenna architecture of D2D relay to enable receive and transmit signals at the same time. Then we optimized power of base station and D2D relay separately with consideration of backhaul interference caused by two-antenna architectures. The simulation results show that the proposed HD relay strategyis superior to existing HD and full-duplex (FD) models in the aspects of system throughput and power efficiency.

Review on LTE-Advanced Mobile Technology

  • Seo, Dae-woong;Kim, Yoon-Hwan;Song, Jeong-Sang;Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.197-203
    • /
    • 2018
  • Long Term Evolution-Advanced (LTE-A) is the next drive in the broadband mobile communication, which allows operators to improve networks performance and service capabilities. LTE-A targets the peak data rates of 1Gbps in the downlink and 500Mbps in the uplink. This requirement is only fulfilled by a transmission bandwidth of up to 100MHz. However the accessibility of such large part of the contiguous spectrum is uncommon in practice. Therefore LTE-A uses some new features on top of the existing LTE standards to provide very high data rate transmission. Some of the most significant features introduced in LTE-A are carrier aggregation, heterogeneous network enhancement, coordinated multipoint transmission and reception, enhanced multiple input and multiple output, and development relay nodes with universal frequency reuse. This review paper presents an overview of the above mentioned LTE-A key features and functionalities. Based on this review, in the conclusion we discuss the current technical challenges for future broadband mobile communication systems.

Fast Channel Allocation for Ultra-dense D2D-enabled Cellular Network with Interference Constraint in Underlaying Mode

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2240-2254
    • /
    • 2021
  • We investigate the channel allocation problem in an ultra-dense device-to-device (D2D) enabled cellular network in underlaying mode where multiple D2D users are forced to share the same channel. Two kinds of low complexity solutions, which just require partial channel state information (CSI) exchange, are devised to resolve the combinatorial optimization problem with the quality of service (QoS) guaranteeing. We begin by sorting the cellular users equipment (CUEs) links in sequence in a matric of interference tolerance for ensuring the SINR requirement. Moreover, the interference quota of CUEs is regarded as one kind of communication resource. Multiple D2D candidates compete for the interference quota to establish spectrum sharing links. Then base station calculates the occupation of interference quota by D2D users with partial CSI such as the interference channel gain of D2D users and the channel gain of D2D themselves, and carries out the channel allocation by setting different access priorities distribution. In this paper, we proposed two novel fast matching algorithms utilize partial information rather than global CSI exchanging, which reduce the computation complexity. Numerical results reveal that, our proposed algorithms achieve outstanding performance than the contrast algorithms including Hungarian algorithm in terms of throughput, fairness and access rate. Specifically, the performance of our proposed channel allocation algorithm is more superior in ultra-dense D2D scenarios.

In-Structure Response Spectra of Seismically Isolated Shear Buildings Considering Eccentricity Effect (면진된 전단 거동 구조물의 층응답스펙트럼에 대한 편심효과)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • For important structures such as nuclear power plants, In-Structure Response Spectrum (ISRS) analysis is essential because it evaluates the safety of equipment and components installed in the structure. Because most structures are asymmetric, the response can be affected by eccentricity. In the case of seismically isolated structures, this effect can be greater due to the difference between the center of mass of the structure and the center of rigidity of the isolator layer. Therefore, eccentricity effects must be considered when designing or evaluating the ISRS of seismically isolated structures. This study investigated the change of the ISRS of an isolated structure by assuming accidental eccentricity. The variables that affect the ISRS of the isolated structure were analyzed to see what additional impact they had due to eccentricity. The ISRS of the seismically isolated structure with eccentricity was amplified more than when there was non-eccentricity, and it was boosted more significantly in specific period ranges depending on the isolator's initial stiffness and seismic intensity. Finally, whether the displacement requirement of isolators can be applied to the variation of the ISRS due to eccentricity in the design code was also examined.

Performance Analysis of Population-Based Bandwidth Reservation Scheme with Various Request Reservation Ratios (요청 예약 비율에 따른 Population-Based Bandwidth Reservation 구조의 성능 분석)

  • Kwon, Se-Dong;Han, Man-Yoo;Park, Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.385-398
    • /
    • 2002
  • To accommodate the increasing number of mobile terminals in the limited radio spectrum, wireless systems have been designed as micro/picocellular architectures for a higher capacity. This reduced coverage area of a cell has caused a higher rate of hand-off events, and the hand-off technology for efficient process becomes a necessity to provide a stable service. Population-based Bandwidth Reservation(PBR) Scheme is proposed to provide prioritized handling for hand-off calls by dynamically adjusting the amount of reserved bandwidth of a cell according to the amount of cellular traffic in its neighboring cells. We analyze the performance of the PBR scheme according to the changes of a fractional parameter, f, which is the ratio of request reservation to the total amount of bandwidth units required for hand-off calls that will occur for the next period. The vague of this parameter, f should be determined based on QoS(Quality of Service) requirement. To meet the requirement the value of Parameter(f) must be able to be adjusted dynamically according to the changing traffic conditions. The best value of f can be determined by a function of the average speed of mobile stations, average call duration, cell size, and so on. This paper considers the average call duration and the cell size according to the speed of mobile stations. Although some difference exists as per speed, in the range of 0.4 $\leq$ f $\leq$ 0.6, Blocking Probability, Dropping Probability and Utilization show the best values.

Giga WDM-PON based on ASE Injection R-SOA (ASE 주입형 R-SOA 기반 기가급 WDM-PON 연구)

  • Shin Hong-Seok;Hyun Yoo-Jeong;Lee Kyung-Woo;Park Sung-Bum;Shin Dong-Jae;Jung Dae-Kwang;Kim Seung-Woo;Yun In-Kuk;Lee Jeong-Seok;Oh Yun-Je;Park Jin-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.35-44
    • /
    • 2006
  • Reflective semiconductor optical amplifiers(R-SOAs) were designed with high gain, wide optical bandwidth, high thermal reliability and wide modulation bandwidth in TO-can package for the transmitter of wavelength division multiplexed-passive optical network(WDM-PON) application. Double trench structure and current block layer were introduced in designing the active layer of R-SOA to enable high speed modulation. The injection power requirement and the viable temperature range of WDM-PON system are experimentally analysed in based on Amplified Spontaneous Emission(ASE)-injected R-SOAs. The effect of the different injection spectrum in the gain-saturated R-SOA was experimentally characterized based on the measurements of excessive intensity noise, Q factor, and BER. The proposed spectral pre-composition method reduces the bandwidth of injection source below the AWG bandwidth and thereby avoids spectrum distortion impeding the intensity noise reduction originated from the amplitude squeezing.

Mixed-Integer Programming based Techniques for Resource Allocation in Underlay Cognitive Radio Networks: A Survey

  • Alfa, Attahiru S.;Maharaj, B.T.;Lall, Shruti;Pal, Sougata
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.744-761
    • /
    • 2016
  • For about the past decade and a half research efforts into cognitive radio networks (CRNs) have increased dramatically. This is because CRN is recognized as a technology that has the potential to squeeze the most out of the existing spectrum and hence virtually increase the effective capacity of a wireless communication system. The resulting increased capacity is still a limited resource and its optimal allocation is a critical requirement in order to realize its full benefits. Allocating these additional resources to the secondary users (SUs) in a CRN is an extremely challenging task and integer programming based optimization tools have to be employed to achieve the goals which include, among several aspects, increasing SUs throughput without interfering with the activities of primary users. The theory of the optimization tools that can be used for resource allocations (RA) in CRN have been well established in the literature; convex programming is one of them, in fact the major one. However when it comes to application and implementation, it is noticed that the practical problems do not fit exactly into the format of well established tools and researchers have to apply approximations of different forms to assist in the process. In this survey paper, the optimization tools that have been applied to RA in CRNs are reviewed. In some instances the limitations of techniques used are pointed out and creative tools developed by researchers to solve the problems are identified. Some ideas of tools to be considered by researchers are suggested, and direction for future research in this area in order to improve on the existing tools are presented.

Review on U.S. Army Helicopter Mishap Analysis for Revision of Crashworthiness Requirements (내추락성 요구도 개정을 위한 미 육군 헬기 사고사례 분석 고찰)

  • Hwang, Jungsun;Lee, Sangmok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.734-739
    • /
    • 2013
  • Representative crashworthiness requirement documents for military helicopter are MIL-STD-1290 and the Aircraft Crash Survival Design Guide(ACSDG) which were lastly revised in the 1980's. Taking analysis results of diverse U.S. Army helicopter mishaps into account, we can say that adequate guidelines do not exist to ensure crashworthiness of new generation aircraft. In this paper, U.S. Army helicopter mishap analysis conducted by U.S. Army Research, Development and Engineering Command(RDECOM) is readjusted to review the basis of new crashworthiness design criteria for military helicopter, in other words, Full Spectrum Crashworthiness Criteria(FSCC). This analysis effort is a part of FSC development. This effort was to research and quantify the dynamics of military aircraft crashes to be used as the quantitative basis for new design criteria.