• Title/Summary/Keyword: Spectrum Prediction

Search Result 336, Processing Time 0.026 seconds

PREDICTION OF BEEF TENDERNESS USING NEAR-INFRARED REFLECTANCE SPECTRUM ANALYSIS

  • Cho, S.I.;Yeo, W.Y.;Nam, K.C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.521-524
    • /
    • 2000
  • Nearinfra-red(NIR) reflectance NIR a spectra (400 to 2,100 nm) were collected on 32 beef samples to find feasibility of predicting beef tenderness. The study to predict beef tenderness was accomplished with the stepwise second differential data of the collected NIR spectra. Beef tenderness was measured by Warner-Bratzler(WB) shear force using a Universal Testing Machine(UTM). After modeling the relation between Warner-Bratzler shear force and NIR spectrum of 19 samples among the 32 beef samples, the verification was carried out through predicting the other 13 samples. The SEC and R$^2$ values in the prediction equation were 9.07(N) and 0.6463, respectively. The SEP and R$^2$ were 14.8(N) and 0.7082 (wave length 552 nm, 1988 nm) respectively. The result implied that it was possible to predict the beef tenderness using NIR spectrum and that the tenderness could be predicted non-destructively in real time.

  • PDF

Development of Smart Phone Application With Spectrometer for u-Health Service (u-Health 서비스를 위한 스마트폰용 스펙트럼 측정 시스템 개발)

  • Kim, Dong-Su;Lee, Seo-Joon;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.261-269
    • /
    • 2013
  • Ubiquitous healthcare is a recent technology and a new methodology of medical diagnosis and medical care. However, in order for u-Healthcare service to become a general technology, there are some technological barriers(mobility, minimization, battery consumption etc) to overcome. In this paper, we developed a spectrum analysis system for smart phones. The results showed that compared to other solutions, our's were not only small in size but also almost the same in performance(reproducibility comparison experiments, Spectrum, Calibration Curve and Prediction). Therefore, the proposed solution is expected to be widely used in u-Health area.

Channel Selection Scheme using Statistical Properties in the Cognitive Radio Networks (인지무선 네트워크에서 통계적 특성을 이용한 채널선택기법)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1767-1769
    • /
    • 2011
  • In a CR (cognitive radio) network, channel selection is one of the important issues for the efficient channel utilization. When the CR user exploits the spectrum of primary network, the interference to the primary network should be minimized. In this paper, we propose a spectrum hole prediction based channel selection scheme to minimize the interference to the primary network. To predict spectrum hole, statistic properties of primary user's traffic is used. By using the predicted spectrum hole, channel is selected and it can reduce the possibility of interference to the primary user and increase the efficiency of spectrum utilization. The performance of proposed channel selection scheme is evaluated by the computer simulation.

Development of Prediction Model to Estimate the Storage Days of Tomato Using Transmittance Spectrum (투과 스펙트럼을 이용한 토마토 수확 후 저장일자 예측모형 개발)

  • Kim, Young-Tae;Suh, Sang-Ryong
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.309-316
    • /
    • 2008
  • The goal of this study was to develop prediction models to estimate the storage days of tomato. The transmittance spectral data measured on tomato were preprocessed through normalization, SNV, Savitzky-Golay, and Norris Gap and then were used to build the prediction models using partial least square (PLS) method. For the experiments, the tomato samples of different varieties were collected at different harvest time. The samples were taken right after harvest from the field and then were stored in a low-temperature storage room in which room temperature was maintained at $10^{\circ}C$. The transmittance spectral data of the tomato samples were measured at three-day intervals for 16 days. The performance of the prediction models was affected by the preprocessing techniques as well as the varieties and harvest time of the tomato. The best model was found when SNV was applied. The accuracy of the best model was 90.2%. It can be concluded that the transmittance spectra are useful information for predicting the period of storage of tomato.

Non-destructive quality prediction of domestic, commercial red pepper powder using hyperspectral imaging

  • Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.224-234
    • /
    • 2023
  • We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.

Wavelength selection by loading vector analysis in determining total protein in human serum using near-infrared spectroscopy and Partial Least Squares Regression

  • Kim, Yoen-Joo;Yoon, Gil-Won
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4102-4102
    • /
    • 2001
  • In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

  • PDF

The Characteristics of Frequency Spectrum of Radiated Electromagnetic Waves with AC Discharge Progress in Liquid Nitrogen (액체 질소중 교류방전 진전에 따른 방사전자파의 주파수 스펙트럼 특성)

  • 박광서;윤대희;이상훈;이현동;김충년;최병주;김기채;이광식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.123-129
    • /
    • 2003
  • In this paper, a relationship between AC discharge progress and the radiated electromagnetic waves was investigated by measuring electromagnetic waves using a biconical antenna and a spectrum analyzer. The frequency spectrum of the radiated electromagnetic waves were measured at the atmospheric pressure in liquid nitrogen($LN_2$) during partial discharges progressed by AC high voltage in nonuniform electric field. Front the results of this study, a new method was introduced for measurement and analysis of the radiated electromagnetic waves with discharge progress in $LN_2$ Besides. according to the consideration of the mutual relation between frequency spectrum of the radiated electromagnetic waves and discharge progress, it was confirmed that detecting partial discharge and estimating discharge progress could be possible. It is considered that these results obtained from this investigation may be used as fundamental data for diagnosis and prediction of electric insulations about superconducting and cryogenic power equipments.

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

A Multi-Channel MAC Protocol for Cognitive Radio

  • Gao, Xiang;Zhu, Wen-Min;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.728-729
    • /
    • 2010
  • Opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel utilization information and selecting appropriate spectrum hole for multi-channel data transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access.

  • PDF