• 제목/요약/키워드: Spectrum Flux

검색결과 146건 처리시간 0.023초

HID 전자석 안정기의 고효율 설계 (Design of a High-Efficiency Electronic Ballast for HID Lamps)

  • 이치환;박선규;이성희;권우현
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2001년도 학술대회논문집
    • /
    • pp.109-113
    • /
    • 2001
  • A high-efficiency electronic ballast for HID lamps is presented. The ballast consists of a PFC and a resonant inverter. To reduce losses of ballast,7C link voltage is determined by taking into account the peak voltage of lamp and a filter-inductor at Bridge diode is employed in order to remove harmonics from PFC. The flux density B$_{m}$ is kept 0.2[T] on all of inductors. A small inductor is connected in series with an electrolytic capacitor of PFC to be operated no high-frequency components. The acoustic resonance is eliminated using the spread spectrum technique. Electronic ballast for 250W metal-halide lamp is implemented and the experimental results show that 97% efficiency, no acoustic resonance and low conducted EMI level.l.

  • PDF

고 출력 백색 변환용 LED(3W용)의 고장메커니즘 비교 (A Comparison of the Failure Mechanism for High Power Converted White LEDs(3W))

  • 윤양기;장중순
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권3호
    • /
    • pp.177-186
    • /
    • 2012
  • This paper presents a comparison of the failure mechanism for high power converted white LEDs(3W) with the commercially available YAG:Ce and silicate phosphor. We carry out the normal aging life test for 10,000 hours, the high temperature aging test for 8,000 hours, the high temperature and humidity aging test for 8,000 hours and the current aging testing for 5,000 hours. The optical and electrical parameters of LEDs were monitored, such as lumen, correlated color temperature (CCT), chromaticity coordinates(x, y), thermal resistance, I -V curve and spectrum intensity. The stress induced a luminous flux decay on LED in all experiments and causes a failure. So we try to find out what's a main failure mechanism for a high power LED.

식물공장 각종광원의 방사조건과 LED조명의 활용에 관한 연구 (A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory)

  • 윤철구;최홍규
    • 조명전기설비학회논문지
    • /
    • 제25권10호
    • /
    • pp.14-22
    • /
    • 2011
  • The artificial lights to be introduced for the plant factories is requiring the artificial light resources with minimizing the energy consumption to reduce the greenhouse gases which is a major cause of global warming, and maximizing the efficiency in photosynthesis effect light-wave range, in which the plants can be greatly grown and developed, and having the signal light-wave range for forming the light types. the best growing and developing environment for the plants has recently realized with utilizing the LED(Lighting Emitting Diode) lamps, as a environment-friendly green lamps, which can elevating the light efficiency with using only the specific light wave range. In this study, to provide the necessary lights for the full artificial light type of the plant factory, the following research/study and experiments has been conducting. experiments of the spectrum for each light sources, and LED, The intensity of illumination, Irradiance, Photosynthesis Photon Flux Density.

NONTHERMAL RADIATION FROM RELATIVISTIC ELECTRONS ACCELERATED AT SPHERICALLY EXPANDING SHOCKS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제48권1호
    • /
    • pp.9-20
    • /
    • 2015
  • We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks based on simple DSA models in the test-particle regime.

수평 환형 공간에서의 진동하는 열대류 (OSCILLATORY THERMAL CONVECTION IN A HORIZONTAL ANNULUS)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.49-55
    • /
    • 2006
  • This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.

Morphology Control of Ag-doped ZnO Nanowires by Hot-walled pulse Laser Deposition

  • 김경원;송용원;김상식;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2009
  • We design and demonstrate the controlled morphologies of Ag-dpped ZnO nanowires (NWs) adopting self-contrived hot-walled pulsed laser deposition (HW-PLD). p-type Ag-doping is ensuired by low temperature photoluminescence (PL) spectrum to find the AoX peak at 3.349 eV. Morphology of grown NWs are controlled by changing the kinetic energy and flux of the ablated particles with adjusting the target - substrate (T-S) distance. The analysis on the resultant NWs is presented.

  • PDF

메탈핼라이드 램프용 고효율 전자식 안정기에 관한 연구 (A Study on High Efficiency Electronic Ballast for Metal Halide Discharge Lamps)

  • 김해준;원재선;박재욱;서철식;이성희;심광열;김종해;김동희
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2157-2165
    • /
    • 2007
  • A novel design technology for a high frequency electronic ballast for metal-halide discharge lamps is proposed. A PFC technique is adopted to get unit power factor and output frequency alteration technique is adopted to avoid acoustic resonance. For characteristics evaluation, the designed electronic ballast is presented using normalized parameter. To reduce losses of the ballast. ZVS control technique is adopted and the maximum flux density of magnetic core for inductor should be kept lower. The electronic ballast for 250[W] metal-halide discharge lamp is implemented and 96[%] efficiency and low conducted EMI level are accomplished.

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

A SPECTROSCOPIC STUDY OF THE SEYFERT GALAXY MCG-2-58-22

  • Choi, Chul-Sung;Dotani, Tadayasu;Chang, Heon-Young
    • 천문학회지
    • /
    • 제38권3호
    • /
    • pp.339-344
    • /
    • 2005
  • We present analysis results of the energy spectra of MCG-2-58-22 associated with occasional flares which appear in a long-term X-ray light curve. We measure an intrinsic power-law slope of this object to be ${\Gamma}=1.74{\pm}0.02$ in the energy range of ${\sim}1-5keV$ and find that this slope is little affected by flares. We confirm that there exists a broad excess emission above 5 keV to the power-law continuum. The excess emission is less variable compared with a flux variation of flare and tends to be relatively weak during flares. A soft X-ray spectrum is also found to change, implying the presence of a variable soft component. We discuss the implications of these spectral variations.