• Title/Summary/Keyword: Spectrometer

Search Result 2,555, Processing Time 0.026 seconds

Determination of Cholesterol by a Diode Laser/Fiber Optic Colorimetric Spectrometer

  • Kim, Seong Ho;Nam, Seong Man;Byeon, Sang Gil;Yun, Sin Yeong;Hong, Seong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.389-392
    • /
    • 2000
  • A simple and inexpensive colorimetric spectrometer for determining total cholesterol has been developed,comprising a diode laser as the light sourcoptical fibers for the light guide and a photodiode as the detector.The stabilty and performance of the new system was investigated by obtaining the calibration curve for stan-dard cholesterol solutions. The total cholesterol in humanserum was also measured by the analyzer and com-pared with the value obtained by a conventional spectrometer. The results showed that the developed spectrometer was useful for the determination of cholesterol levels. The visible diodelaser used in the study exhibited good spectroscopic and operational properties for colorimetric absorption spectrometry and could be a key component for the development of a simple and economical analyzer.

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

Research on a Spectral Reconstruction Method with Noise Tolerance

  • Ye, Yunlong;Zhang, Jianqi;Liu, Delian;Yang, Yixin
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.562-575
    • /
    • 2021
  • As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.

The quantitative analysis of combustive gases on fire by remote passive open path FT-IR spectrometer (Passive open-path FT-IR spectrometer를 사용한 원거리 화재 연소 가스 정량 분석)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • It was studied to analyze the $CO_2$, CO, $SO_2$ standard gases of combustion gases by the open path FT-IR spectrometer with passive mode for remote analysis of air pollutant and volcano gases without IR lamp. As result, it was confirmed to have good linearity with more than 0.9 as correlation coefficients on the calibration curve of $CO_2$, CO concentration by MLR method. But in the case of $SO_2$, because the correlation coefficients were 0.88, the linearity could be lower. Finally, the concentration of three gases was predicted on in-site fire experiment under the condition of quantitative analysis. It could measure high $CO_2$ concentration as predicted result, but didn't measure the CO and $SO_2$. According to the result, it was possible to measure the combustion gases to long distance by only open path FT-IR spectrometer without infrared lamp.

Simultaneous Determiniation of Ar/$N_2$Ratios in Groundwater (지하수에 용해된 질소, 아르곤 가스의 동시측정)

  • Kim, Euisik;Roy F. Spalding
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.6-9
    • /
    • 1994
  • Previously reported Ar/N$_2$ratios in groundwater have been measured by single ion monitoring (Barnes et al., 1975; Vogel et al., 1981; Mariotti et al., 1988). The detector geometry and flared flight tube in VG Optima isotopic ratio mass spectrometer appeared to be fortuitously aligned for the simultaneous measurement of Ar/N$_2$ratios. Method development included mechanical adjustments to optimize the mass spectrometer for Ar/N$_2$ratio measurements followed by development of a preparation system for the extraction of air-saturated water samples. Samples containing known Ar/N$_2$ratios were used to assess accuracy and precision, and to test the applicability of methods for measurements of aqueous Ar/N$_2$ratios. The results indicated that the prepared air-saturated water samples were almost identical to the predicted Ar/N$_2$ratios (p <0.001). Groundwater samples were collected from on-going research sites, Shelton and Grand Island, Nebraska. Samples from the Grand Island sludge injection site form a lower boundary for worldwide reported Ar/N$_2$ratios. These lower Ar/N$_2$ratios can be explained by the production of nitrogen gas from this site, where denitrification was reported previously.

  • PDF

Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

  • Lee, Sang-Won;Kang, Heesung;Park, Joo Hyun;Lee, Tae Geol;Lee, Eun Seong;Lee, Jae Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of $26.07^{\circ}$, in combination with a lens of focal length 85.1 mm, are suitable for UHR SD-OCT with the imaging depth range (limited by spectrometer resolution) set at 2.0 mm. As guided by the simulation results, we constructed the linear-k spectrometer needed to implement a UHR SD-OCT. The actual imaging depth range was measured to be approximately 2.1 mm, and axial resolution of $3.8{\mu}m$ in air was achieved, corresponding to $2.8{\mu}m$ in tissue (n = 1.35). The sensitivity was -91 dB with -10 dB roll-off at 1.5 mm depth. We demonstrated a 128.2 fps acquisition rate for OCT images with 800 lines/frame, by taking advantage of NVIDIA's compute unified device architecture (CUDA) technology, which allowed for real-time signal processing compatible with the speed of the spectrometer's data acquisition.

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

NEW DEVELOPED PORTABLE NEAR INFRARED (NIR) SYSTEM USING MICROSPECTROMETER

  • Woo, Young-Ah;Ha, Tae-Kyu;Kim, Jae-Min;Kim, Hyo-Jin
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1123-1123
    • /
    • 2001
  • In recent years, a miniature spectrometer has been extensively developed due to the marriage of fiber optics and semiconductor detector array. This type of miniature spectrometer has advantages of low price and robustness due to the capability of mass production and no moving parts are required such as lenses, mirrors and scanning monochromator. These systems are ideal for use in teaching labs, process monitoring and field analyses. A portable near infrared (NIR) system has been developed for qualitative and quantitative analysis. This system includes a tungsten halogen lamp for light source, a fiber optics connected a light source, and a sample module to the microspectrometer, The size of spectrometer can be as small as 2.5 cm x 1.5 cm x 0.1 cm. Wavelength ranges can be chosen as 360-800 nm, 800-1100 nm and 1100-1900 nm depending on the type of detector. The software consists of various tools for multivariate analysis and pattern recognition techniques. To evaluate the system, long and short-term stability, wavelength accuracy, and stray light have been investigated and compared with conventional scanning type NIR spectrometer. This developed system can be sufficiently used for quantitative and qualitative analysis for various samples such as agricultural product, herbal medicine, food, petroleum, and pharmaceuticals, etc.

  • PDF

Sll0396 regulates transcription of the phycocyanin genes in Synechocystis sp. PCC 6803

  • Oh, In-Hye;Kim, Ho-San;Chung, Young-Ho;Kim, Young-Hye;Park, Young-Mok
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.193-199
    • /
    • 2010
  • An olive-green mutant was generated in Synechocystis sp. strain PCC 6803 by inactivation of the sll0396 gene. Whole-cell absorption spectra of the mutant revealed the missing of phycocyanin peak. An investigation of the low-temperature fluorescence emission spectra revealed that the $sll0396{\Omega}$ mutant has a reduced amount of phycocyanin. Western blot analysis showed that the mutant contained less phycocyanin ${\beta}$- and ${\alpha}$-subunits and lacked the 30- and 32-kDa linker polypeptides, and northern blot analysis revealed that the transcription of the 1.4-kb cpcBA gene encoding the phycocyanin ${\beta}$- and ${\alpha}$-subunits was lower in the mutant. The Sll0396 protein has a DNA-binding motif and shares homology with known response regulators. Our results indicate that Sll0396 plays a regulatory role in the transcription of the phycocyanin genes during phycobilisome synthesis.