• Title/Summary/Keyword: Spectrograph

Search Result 370, Processing Time 0.044 seconds

Development of KASI Imaging Spectrograph

  • Kim, Yeon-Han;Mun, Yong-Jae;Jo, Gyeong-Seok;Bong, Su-Chan;Park, Yeong-Deuk;Choi, Seong-Hwan;Jang, Bi-Ho;Kim, Su-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.82.2-82.2
    • /
    • 2007
  • PDF

THE KYOTO 3D SPECTROGRAPH

  • OHTANI H.;ISHIGAKI T.;HAYASHI T.;OZAKI S.;HATTORI T.;SASAK M.;AOKI K.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.405-406
    • /
    • 1996
  • PDF

Preliminary Design of the G-CLEF Flexure Control Camera System

  • Oh, Jae Sok;Park, Chan;Park, Sung-Joon;Kim, Kang-Min;Chun, Moo-Young;Yu, Young Sam;Lee, Sungho;Szentgyorgyi, Andrew;Norton, Timothy;Podgorski, William;Evans, Ian;Mueller, Mark;McMuldroch, Stuart;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.56.1-56.1
    • /
    • 2015
  • The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT) and an optical-band echelle spectrograph. The Flexure Control Camera (FCC) is one of the major contributions of KASI's for the spectrograph project. FCC system includes the Fiber Mirror monitoring and the on- and off-slit mode auto-guidance algorithm. In this study, we present the modified design of the FCC optics and opto-mechanics after the G-CLEF Preliminary Design Review (PDR) held in Cambridge in April 2015.

  • PDF

Chromospheric oscillation signatures observed by the NST FISS

  • Kim, Yeon-Han;Cho, Il-Hyun;Bong, Su-Chan;Cho, Kyung-Suk;Yang, Heesu;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.92.1-92.1
    • /
    • 2013
  • In this study, we examined chromospheric oscillation signatures in two solar active regions, a limb active region and a sunspot with a light bridge, observed by the Fast Imaging Solar Spectrograph (FISS) of the 1.6m New Solar Telescope (NST) at Big Bear Solar Observatory. The FISS is a slit spectrograph with a fast imaging capability and can observe the solar chromosphere in $H{\alpha}$ and Ca II $8542{\AA}$ bands simultaneously with high spectral resolutions. After dark and flat correction, we compensated for image rotation at the Coude focus and made image alignment. We estimated Doppler shifts over active regions using the bisector method and investigated the temporal and spatial fluctuations of Doppler shifts for some selected cases. And we obtain the power map by using the Lomb-Scargle periodogram technique to examine the oscillation power at different features. Finally, we will discuss our results and implications.

  • PDF