• Title/Summary/Keyword: Spectrograph

Search Result 370, Processing Time 0.026 seconds

Data reduction package for the Immersion Grating Infrared Spectrograph (IGRINS)

  • Sim, Chae Kyung;Le, Huynh Anh Nguyen;Pak, Soojong;Lee, Hye-In;Kang, Wonseok;Chun, Moo-Young;Jeong, Ueejeong;Yuk, In-Soo;Kim, Kang-Min;Park, Chan;Jaffe, Daniel T.;Pavel, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.84.1-84.1
    • /
    • 2013
  • We present a python-based data reduction pipeline for the Immersion GRating INfrared Spectrograph (IGRINS). IGRINS covers the complete H- and K-bands in a single exposure with a spectral resolving power of greater than 40,000. IGRINS is designed to be compatible with telescopes of diameters ranging from 2.7-m (the Harlan J. Smith telescope at McDonald Observatory) to 8-10m. Commissioning and initial operation will be on the 2.7-m telescope from late 2013. The pipeline package is a part of the IGRINS software and designed to be compatible with other package that maneuvers the spectrograph during the observation. This package provides high-quality spectra with minimal human intervention and the processes of order extraction, distortion correction, and wavelength calibration can be automatically carried out using the predefined functions (e.g. echellogram mapping and 2D transform). Since the IGRINS is a prototype of the Giant Magellan Telescope Near-Infrared Spectrometer (GMTNIRS), this pipeline will be extended to the GMTNIRS software.

  • PDF

OPTICAL DESIGN OF THE FAR ULTRAVIOLET IMAGING SPECTROGRAPH (원자외선 영상/분광 측정기 광학설계)

  • ;;;Jerry Edelstein
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.359-371
    • /
    • 1998
  • We present the design specifications and the performance estimation of the FUVS (Far Ultraviolet Spectrograph) proposed for the observations of aurora, day/night airglow and astronomical objects on small satelltes in the spectral range of $900~1750AA$. The design of FUVS is carried out with the full consideration of optical characteristics of the grating and the aspheric substrate. Two independent methods, ray-tracing and the wave front aberration theory, are employed to estimate the performance of the optical design and it is verified that both procedures yield the resolution of $2~5AA$ in the entire spectral range. MDF (Minimum Detectable Flux) is also estimated using the known characteristics of the reflecting material and MCP, to study the feasibility of detection for faint emission lines from the hot interstellar plasmas. The results give that the observations from 1 day to 1 week, depending on the line intensity, can detect such faint emission lines from diffuse interstellar plasmas.

  • PDF

Auto-guiding Performance from IGRINS Test Observations (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Le, Huynh Anh N.;Kang, Wonseok;Mace, Gregory;Pavel, Michael;Jaffe, Daniel T.;Lee, Jae-Joon;Kim, Hwihyun;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.92.1-92.1
    • /
    • 2014
  • In astronomical spectroscopy, stable auto-guiding and accurate target centering capabilities are critical to increase the achievement of high observation efficiency and sensitivity. We developed an instrument control software for the Immersion GRating INfrared Spectrograph (IGRINS), a high spectral resolution near-infrared slit spectrograph with (R=40,000). IGRINS is currently installed on the McDonald 2.7 m telescope in Texas, USA. We had successful commissioning observations in March, May, and July of 2014. The role of the IGRINS slit-viewing camera (SVC) is to move the target onto the slit, and to provide feedback about the tracking offsets for the auto-guiding. For a point source, we guide the telescope with the target on the slit. While for an extended source, we use another a guide star in the field offset from the slit. Since the slit blocks the center of the point spread function, it is challenging to fit the Gaussian function to guide and center the target on slit. We developed several center finding algorithms, e.g., 2D-Gaussian Fitting, 1D-Gaussian Fitting, and Center Balancing methods. In this presentation, we show the results of auto-guiding performances with these algorithms.

  • PDF

The Sun Observed by Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear

  • Chae, Jong-Chul;Park, Hyung-Min;Ahn, Kwang-Su;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Jang, Bi-Ho;Cho, Kyung-Suk;Cao, Wenda;Gorceix, Nicholas;Goode, Philip R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.25-25
    • /
    • 2010
  • With the aim of resolving important physical problems in the chromosphere of the Sun, we developed the Fast Imaging Solar Spectrograph for several years, and at last successfully installed it in the Coude room of the 1.6 meter New Solar Telescope at Big Bear in 2010 May. The instrument is an Echelle spectrograph with imaging capability based on slit scan, and can record two spectral bands (e.g., H alpha band and Ca II 8542 band) simultaneously. The early runs of the instrument produced data of high quality that are suited for the study of quiet Sun, filaments on the disk, prominences outside the limb, active regions and sunspots. We are ready to do good solar sciences using our own instrument, and will be able to do best sciences with the coming improvement of spatial resolution.

  • PDF

Current Status and Improvement of the Fast Imaging Solar Spectrograph of the 1.6m telescope at Big Bear Solar Observatory

  • Park, Hyungmin;Chae, Jongchul;Song, Donguk;Yang, Heesu;Jang, Bi-Ho;Park, Young-Deuk;Nah, Jakyoung;Cho, Kyung-Suk;Ahn, Kwangsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.112.2-112.2
    • /
    • 2012
  • For the study of fine-scale structure and dynamics in the solar chromosphere, the Fast Imaging Solar Spectrograph (FISS) was installed in 1.6m New Solar Telescope at Big Bear Solar Observatory in 2010. The instrument, installed at a vertical table of the Coude lab, is properly working and producing data for science. From the analysis of the data, however, we noticed that a couple of problems exist that deteriorate image quality : lower light level and poorer resolution of the CaII band data. After several tests, we found that the relay optics at the right position is crucial role for the spatial resolution of raster-scan images. By using resolution target, we re-aligned relay optics and other components of the spectrograph. Here we present the result of optical test and new data taken by the FISS.

  • PDF

Precise Prediction of Optical Performance for Near Infrared Instrument Using Adaptive Fitting Line

  • Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyoung;Oh, Heeyoung;Yuk, In-Soo;Park, Chan;Chun, Moo-Young;Oh, Jae Sok;Kim, Kang-Min;Lee, Hanshin;Jeong, Ueejeong;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of $0.014{\pm}0.007{\lambda}$ rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below ${\lambda}/70$ rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.

The Standard Processing of a Time Series of Imaging Spectral Data Taken by the Fast Imaging Solar Spectrograph on the Goode Solar Telescope

  • Chae, Jongchul;Kang, Juhyeong;Cho, Kyuhyoun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • The Fast Imaging Solar Spectrograph (FISS) on the Goode Solar Telescope (GST) at Big Bear Solar Observatory is the imaging Echelle spectrograph developed by the Solar Astronomy Group of Seoul National University and the Solar and Space Weather Group of Korea Astronomy and Space Science Institute. The instrument takes spectral data from a region on the Sun in two spectral bands simultaneously. The imaging is done by the organization of intensity data obtained from the fast raster scan of the slit over the field of view. Since the scan repeats many times, the whole set of data can be used to construct the movies of monochromatic intensity at arbitrary wavelengths within the spectral bands, and those of line-of-sight velocity inferred from different spectral lines. So far there are two standard observing configurations: one recording the $H{\alpha}$ line and the Ca II 8542 line simultaneously, and the other recording the Na I D2 line and Fe I 5435 line simultaneously. We have developed the procedures to produce the standard data for each observing configuration. The procedures include the spatial alignment, the correction of spectral shift of instrumental origin, and the lambdameter measurement of the line wavelength. The standard data include the movie of continuum intensity, the movies of intensity and velocity inferred from a chromospheric spectral line, the movies of intensity and velocity inferred from a photospheric line. The processed standard data will be freely available online (fiss.snu.ac.kr) to be used for research and public outreach. Moreover, the IDL procedures will be provided on request as well so that each researcher can adapt the programs for their own research.

  • PDF

An Analysis of the Symbiotic Star Z And Line Profile (공생별 Z And의 선윤곽 분석)

  • Lee, Seong-Jae;Hyung, Siek;Lee, Kangwhan
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.608-617
    • /
    • 2012
  • The symbiotic nova Z Andromedae (And) was investigated, using the high dispersion spectra of spectral resolution, ${\Delta}{\lambda}{\sim}-0.1{\AA}$. The spectral observations were done with (1) the Hamilton Echelle Spectrograph (HES) and the high resolution spectra (exposures=1800s and 3600s) were obtained at Lick Observatory in 2001 August $30^{th}$ (phase ${\Phi}$=0.77), and 2002 August $12^{th}$ (phase ${\Phi}$=0.22), (2) with the Bohyunsan Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory and the high resolution spectra (exposure=1200s) were secured in 2009 October $21^{st}$ (phase ${\Phi}$=0.70). From both the HES and BOES spectral data in the $3600{\AA}-9500{\AA}$ wavelengths, we extracted the emission lines of HI, HeI, and HeII, which have been decomposed into double or triple Gaussian components for 3 consecutive phases. The emission zones responsible for these components appear to be closely related with the orbital motion of a white dwarf or a giant star. The presence of the Raman scattering $H{\alpha}$ broad wing feature and the kinematic characteristics of the line profile observed in each phase imply that the Z And emission lines are mostly from two Lagrangian points, $L_1$ and $L_2$, and the accretion disk around the white dwarf star. The Z And was most active in 2009 and 2001 during the outburst phase, while it remained quiescent in 2002 in spite of the complex line profiles.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

IGRINS First Light Instrumental Performance

  • Park, Chan;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Park, Byeong-Gon;T., Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is an unprecedentedly minimized infrared cross-dispersed echelle spectrograph with a high-resolution and high-sensitivity optical performance. A silicon immersion grating features the instrument for the first time in this field. IGRINS will cover the entire portion of the wavelength range between 1.45 and $2.45{\mu}m$ accessible from the ground in a single exposure with spectral resolution of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{\prime\prime}{\times}15^{\prime\prime}$. IGRINS has a $0.27^{\prime\prime}$ pixel-1 plate scale on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized rectangular vacuum chamber. The fabrication and assembly of the optical and mechanical hardware components were completed in 2013. In this presentation, we describe the major design characteristics of the instrument and the early performance estimated from the first light commissioning at the McDonald Observatory.

  • PDF