• Title/Summary/Keyword: Spectrogram

Search Result 244, Processing Time 0.024 seconds

Comparison of Korean Real-time Text-to-Speech Technology Based on Deep Learning (딥러닝 기반 한국어 실시간 TTS 기술 비교)

  • Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.640-645
    • /
    • 2021
  • The deep learning based end-to-end TTS system consists of Text2Mel module that generates spectrogram from text, and vocoder module that synthesizes speech signals from spectrogram. Recently, by applying deep learning technology to the TTS system the intelligibility and naturalness of the synthesized speech is as improved as human vocalization. However, it has the disadvantage that the inference speed for synthesizing speech is very slow compared to the conventional method. The inference speed can be improved by applying the non-autoregressive method which can generate speech samples in parallel independent of previously generated samples. In this paper, we introduce FastSpeech, FastSpeech 2, and FastPitch as Text2Mel technology, and Parallel WaveGAN, Multi-band MelGAN, and WaveGlow as vocoder technology applying non-autoregressive method. And we implement them to verify whether it can be processed in real time. Experimental results show that by the obtained RTF all the presented methods are sufficiently capable of real-time processing. And it can be seen that the size of the learned model is about tens to hundreds of megabytes except WaveGlow, and it can be applied to the embedded environment where the memory is limited.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network

  • Wang, Su-Mei;Jiang, Gao-Feng;Ni, Yi-Qing;Lu, Yang;Lin, Guo-Bin;Pan, Hong-Liang;Xu, Jun-Qi;Hao, Shuo
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.625-640
    • /
    • 2022
  • Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.

A Comparative Study of the Speech Signal Parameters for the Consonants of Pyongyang and Seoul Dialects - Focused on "ㅅ/ㅆ" (평양 지역어와 서울 지역어의 자음에 대한 음성신호 파라미터들의 비교 연구 - "ㅅ/ ㅆ"을 중심으로)

  • So, Shin-Ae;Lee, Kang-Hee;You, Kwang-Bock;Lim, Ha-Young
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.927-937
    • /
    • 2018
  • In this paper the comparative study of the consonants of Pyongyang and Seoul dialects of Korean is performed from the perspective of the signal processing which can be regarded as the basis of engineering applications. Until today, the most of speech signal studies were primarily focused on the vowels which are playing important role in the language evolution. In any language, however, the number of consonants is greater than the number of vowels. Therefore, the research of consonants is also important. In this paper, with the vowel study of the Pyongyang dialect, which was conducted by phonological research and experimental phonetic methods, the consonant studies are processed based on an engineering operation. The alveolar consonant, which has demonstrated many differences in the phonetic value between Pyongyang and Seoul dialects, was used as the experimental data. The major parameters of the speech signal analysis - formant frequency, pitch, spectrogram - are measured. The phonetic values between the two dialects were compared with respect to /시/ and /씨/ of Korean language. This study can be used as the basis for the voice recognition and the voice synthesis in the future.

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.

A Novel Approach to a Robust A Priori SNR Estimator in Speech Enhancement (음성 향상에서 강인한 새로운 선행 SNR 추정 기법에 관한 연구)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.383-388
    • /
    • 2006
  • This Paper presents a novel approach to single channel microphone speech enhancement in noisy environments. Widely used noise reduction techniques based on the spectral subtraction are generally expressed as a spectral gam depending on the signal-to-noise ratio (SNR). The well-known decision-directed(DD) estimator of Ephraim and Malah efficiently reduces musical noise under the background noise conditions, but generates the delay of the a prioiri SNR because the DD weights the speech spectrum component of the Previous frame in the speech signal. Therefore, the noise suppression gain which is affected by the delay of the a priori SNR, which is estimated by the DD matches the previous frame rather than the current one, so after noise suppression. this degrades the noise reduction performance during speech transient periods. We propose a computationally simple but effective speech enhancement technique based on the sigmoid type function for the weight Parameter of the DD. The proposed approach solves the delay problem about the main parameter, the a priori SNR of the DD while maintaining the benefits of the DD. Performances of the proposed enhancement algorithm are evaluated by ITU-T p.862 Perceptual Evaluation of Speech duality (PESQ). the Mean Opinion Score (MOS) and the speech spectrogram under various noise environments and yields better results compared with the fixed weight parameter of the DD.

Feasibility of Deep Learning-Based Analysis of Auscultation for Screening Significant Stenosis of Native Arteriovenous Fistula for Hemodialysis Requiring Angioplasty

  • Jae Hyon Park;Insun Park;Kichang Han;Jongjin Yoon;Yongsik Sim;Soo Jin Kim;Jong Yun Won;Shina Lee;Joon Ho Kwon;Sungmo Moon;Gyoung Min Kim;Man-deuk Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.949-958
    • /
    • 2022
  • Objective: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty (PTA). Materials and Methods: Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before (pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping (Grad-CAM) was used to produce visual explanations for DCNN model decisions. Results: Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of "pre-PTA" shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, Grad-CAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram. Conclusion: Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.

A Partial Discharge Diagnostic System for Power Cable Using FBDS(Frequency Band Detection Sensor) (주파수대역 검출센서를 이용한 전력케이블의 부분방전 진단 시스템)

  • Lee, Chul-hee;Choi, Hyung-ki;Hong, Soo-mi;Jeoung, Eui-bung;Park, Kee-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.157-163
    • /
    • 2017
  • This system is a diagnosis system that checks whether it causes a partial discharge of a power cable or not. PD(Partial Discharge) is detected by FBDS(Frequency Band Detection Sensor). That is, it means a acoustic sensor capable of detecting each frequency band. The wave shape of PD sound is similar to noise and is systematically generated by partial discharge. Therefore, in this paper, we could discriminate between normal and abnormal case using relative level crossing rate(RLCR) and spectrogram of frequency energy rate.