• 제목/요약/키워드: Spectrally-resolved interferometry

검색결과 4건 처리시간 0.02초

방향 판별 분산간섭계의 최적 분산 조건 연구 (Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry)

  • 윤영호;김대희;주기남
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Optical Multi-Channel Intensity Interferometry - or: How To Resolve O-Stars in the Magellanic Clouds

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.111-111
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer of the 1970s when resolving. Our approach, based on spectrally resolved light, permits the construction of large optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometers are able to spatially resolve main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars; (ii) mass-radius relationships of compact stellar remnants; (iii) stellar rotation; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields; (v) the structure and evolution of multiple stars; (vi) direct measurements of interstellar distances; (vii) the physics of gas accretion onto supermassive black holes; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  • PDF