• Title/Summary/Keyword: Spectral studies

Search Result 691, Processing Time 0.025 seconds

POTENTIAL OF NIRS FOR SUPPORTING BREEDING AND CULTIVATION OF MEDICINAL AND SPICE PLANTS

  • Schulz, Hartwig;Steuer, Boris;Kruger, Hans
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1162-1162
    • /
    • 2001
  • Whereas NIR spectroscopy has been applied in agriculture for more than 20 years, few studies refer to those plant substances occurring only in smaller amounts. Nevertheless there is a growing interest today to support efficiently activities in the production of high-quality medicinal and spice plants by this fast and non-invasive method. Therefore, it was the aim of this study to develop new NIR methods for the reliable prediction of secondary metabolites found as valuable substances in various plant species. First, sophisticated NIR methods were established to perform fast quality analyses of intact fennel, caraway and dill fruits deriving from single-plants [1]. Later on, a characterization of several leaf drugs and the corresponding fresh material has been successfully performed. In this context robust calibrations have been developed for dried peppermint, rosemary and sage leaves for the determination of their individual essential oil content and composition [2]. A specially adopted NIR method has been developed also for the analysis of carnosic acid in the leaves of numerous rosemary and sage gene bank accessions. Carnosic acid is an antioxidative substance for which several health promoting properties including cancer preservation are assumed. Also some other calibrations have been developed for non-volatile substances such as aspalathin (in unfermented rooibos leaves), catechins (in green tea) and echinacoside (in different Echinacea species) [3]. Some NIR analyses have also been successfully performed on fresh material, too. In spite of the fact that these measurements showed less accuracy in comparison to dried samples, the calibration equations are precise enough to register the individual plant ontogenesis and genetic background. Based on the information received, the farmers and breeders are able to determine the right harvest time (when the valuable components have reached their optimum profile) and to select high-quality genotypes during breeding experiments, respectively. First promising attempts have also been made to introduce mobile diode array spectrometers to collect the spectral data directly on the field or in the individual natural habitats. Since the development of reliable NIRS methods in this special field of application is very time-consuming and needs continuous maintenance of the calibration equations over a longer period, it is convenient to supply the corresponding calibration data to interested user via NIRS network. The present status of all activities, preformed in this context during the last three years, will be presented in detail.

  • PDF

Near Infrared Spectroscopy for Measuring Purine Derivatives in Urine and Estimation of Microbial Protein Synthesis in the Rumen for Sheep

  • Atanassova, Stefka;Iancheva, Nana;Tsenkova, Roumiana
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1273-1273
    • /
    • 2001
  • The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.

  • PDF

Polarization Analysis of Ultra Low Frequency (ULF) Geomagnetic Data for Monitoring Earthquake-precusory Phenomenon in Korea (지진 전조현상 모니터링을 위한 ULF 대역 지자기장의 분극 분석)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Young-Gyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Since the 1990's, a number of ULF geomagnetic disturbance associated with earthquake occurrences have actively been reported, and polarization analysis of geomagnetic fields becomes one of potential candidates to be capable of predicting short-term earthquake. This study develops the modified polarization analysis method based on the previous studies, and analyzes three-component geomagnetic fields obtained at Cheongyang geomagnetic observatory using the developed method. A daily polarization value (the ratio of spectral power of horizontal and vertical geomagnetic field) is calculated with a focus on the 0.01 Hz band, which is known to be the most sensitive to seismogenic ULF radiation. We analyze a total of 10 months of geomagnetic data obtained at Cheongyang observatory, and compare the polarization values with the Kp index and the earthquake occurred in the analysis period. The results show that there is little correlation between the temporal variations of polarization values and Kp index, but remarkable increases in polarization values are identified which are associated with two earthquakes. Comparison the polarization values obtained at Cheongyang and Kanoya observatory indicates that the increases of polarization values at Cheongyang might be due to not global geomagnetic induction but the locally occurred earthquakes. Furthermore, these features are clearly shown in normalized polarization values, which take account in the statistical characteristics of each geomagnetic field. On the basis of these results, polarization analysis can be used as promising tool for monitoring the earthquake-precursory phenomenon.

Source Parameters of Two Moderate Earthquakes at the Yellow Sea Area in the Korean Peninsula on March 22 and 30, 2003 (한반도 황해 해역에서 발생한 2003년 3월 23일, 3월 30일 중규모 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Two moderate earthquakes with local magnitude 4.9 and 5.0 at the Yellow Sea area occurred successively around Hong island on March 22, 2003 and Baengnyeong island on March 30, 2003, respectively, close to the Korean Peninsula. Focal mechanisms by the waveform inversion analysis are strike slip faulting with a thrust component for the March 22 event, and normal faulting for the March 30 event. The direction of P-axes of two events were ENE-WSW which were similar to previous studies on that of P-axes in and around the Korean Peninsula. Moment magnitudes determined by the waveform inversion analysis were 4.7 and 4.5, respectively, whereas those determined by spectral analysis were 4.8 and 4.6, respectively. As regards the March 22 event, regional stress by combined tectonic forces from compressions of plates colliding to the Eurasian plate, rather than mere local stress, was indicated. However, it was estimated that the March 30 event took place when the weak zone generated from the existing collision zone was reactivated when subjected to local stress in the tensile direction. This seismological observation indirectly supports the idea that the collision zone may extend to the Korean Peninsula.

Multiple Albedo Variation Caused by the Shadow Effect of Urban Building and Its Impacts on the Urban Surface Heat Budget (도심 건축물 그림자효과에 의한 다중 반사도 변화와 도시지표면 열수지에 미치는 영향)

  • Lee, Soon-Hwan;Ahn, Ji-Suk;Kim, Sang-Woo;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.738-748
    • /
    • 2010
  • In order to clarify the impact of variation of albedo on the atmospheric boundary layer caused by the density of building in urban areas, both satellite data analysis and numerical experiments were carried out. Utilized satellite data were multi-spectral visible data detected by the Korea Multi- Purpose Satellite -2 (KOMSAT-2), and the numerical models for the estimation of surface heat budget are Albedo Calculation Model (ACM) and Oregon State University Planetary Boundary Layer model (OSUPBL). In satellite data analysis, the estimated albedo in densely populated building area is lower than other regions by 17% at the maximum due to the shadow effect of skyscraper buildings. The surface temperature reached $43.5^{\circ}C$ in the highly dense and tall building area and $37.4^{\circ}C$ in the coarse density area of low buildings, respectively. However, the low albedo in densely integrated building area is not directly related to the increase of surface air temperature since the mechanical turbulence induced by the roughness of buildings is more critical in its impact than the decrease of albedo.

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

Detection of Decay Leaf Using High-Resolution Satellite Data (고해상도 위성자료를 활용한 마른 잎 탐지)

  • Sim, Suyoung;Jin, Donghyun;Seong, Noh-hun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Jung, Daeseong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.401-410
    • /
    • 2020
  • Recently, many studies have been conducted on the changing phenology on the Korean Peninsula due to global warming. However, because of the geographical characteristics, research on plant season in autumn, which is difficult to measure compared to spring season, is insufficient. In this study, all leaves that maple and fallen leaves were defined as 'Decay leaves' and decay leaf detection was performed based on the Landsat-8 satellite image. The first threshold value of decay leaves was calculated by using NDVI and the secondary threshold value of decay leaves was calculated using by NDWI and the difference of spectral characteristics with green leaves. POD, FAR values were used to verify accuracy of the dry leaf detection algorithm in this study, and the results showed high accuracy with POD of 98.619 and FAR of 1.203.

Assessment of Surface Topographic Effect in Earthquake Ground Motion on the Upper Slope via Two-Dimensional Geotechnical Finite Element Modeling (이차원 지반 유한요소 모델링을 통한 사면상부 지진지반운동의 지표면 지형효과 분석)

  • Sun, Chang-Guk;Bang, Kiho;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.201-213
    • /
    • 2015
  • Site effects resulting in the amplification of earthquake ground motion are strongly influenced not only by the subsurface soil conditions and structure, but also by the surface topography. Yet, over the last several decades, most studies of site-specific seismic responses in Korea have focused primarily on the seismic amplification associated with geologic and soil conditions. For example, the effects of local geology are now well established and have been incorporated into current Korean seismic design codes, whereas topographic effects have not been considered. To help address this shortcoming, two-dimensional (2D) seismic site response analyses, using finite element (FE) ground modeling with three different slope angles, were performed in order to assess the site effects of surface topography. We then compared our results, specifically peak ground acceleration (PGA) and acceleration response spectrum, to those of one-dimensional (1D) FE model analyses conducted alongside our study. Throughout much of the upper slope region, PGAs and spectral accelerations are larger in the 2D analyses than in the 1D analyses as a result of the topographic effect.

Muscle Activities in the Lower Limbs for the Different Movement Patterns on an Unstable Platform

  • Piao, Yong-Jun;Choi, Youn-Jung;Kwon, Tae-Kyu;Hwang, Ji-Hye;Kim, Jung-Ja;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.590-600
    • /
    • 2007
  • We performed experimental studies on the muscle activities in the lower limbs for the different movement patterns on an unstable platform. A training system for postural control using an unstable platform that we previously developed was applied for the experiments. This unstable platform provides 360 degrees of movement allowing for training of posture in various directions and provides simultaneous excitations to visual sensory, somatic sensation and vestibular organs. Compare with the stable platform, keeping body balance on the unstable platform requests more effective sensation from vision, vestibular sense and somatic sense. Especially, the somatosensory inputs from the muscle proprioceptors and muscle force are crucial. To study the muscle activities for the different movement patterns and find the best training method for improving the ability of postural control through training and improving the lower extremity muscular strength, fifteen young healthy participants went through trainings and experiments. The participants were instructed to move the center of pressure following the appointed movement pattern while standing on the unstable platform. The electromyographies of the muscles in the lower limbs were recorded and analyzed in the time and the frequency domain. Our experimental results showed the significant differences in muscle activities for the different movement patterns. Especially, the spectral energy of electromyography signals in muscle for the movement pattern in anterior-posterior direction was significantly higher than those occurred in the other patterns. The muscles in the lower leg, especially tibialis anterior and gastrocnemius were more activated compared to the others for controlling the balance of body on the unstable platform. The experimental results suggest that, through the choice of different movement pattern, the training for lower extremity strength could be performed on specific muscles in different intensity. And, the ability of postural control could be improved by the training for lower extremity strength.

Estimation of Light Absorption by Brown Carbon Particles using Multi-wavelength Dual-spot Aethalometer (다파장 Dual-spot Aethalometer를 이용한 갈색탄소의 광흡수계수 평가)

  • Yu, Geun-Hye;Yu, Jae-Myeong;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.207-222
    • /
    • 2018
  • In this study, light absorption of carbonaceous species in $PM_{2.5}$ was investigated using a dual-spot 7-wavelength Aethalometer(model AE33) with 1-min time interval between January 01 and September 30, 2017 at an urban site of Gwangju. During the study period, two Asian dust (AD) events occurred in April (AD I) and May (AD II), respectively, during which light absorption in total suspended particles was observed. Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths over the study period. Light absorption coefficients by aerosol particles were found to have 2.7~3.3 times higher at 370 nm than at 880 nm. This would be attributed to light absorbing organic aerosols, which is called brown carbon (BrC), as well as BC as absorbing agents of aerosol particles. Monthly average absorption ${{\AA}}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950nm}$) calculated over wavelength range of 370~950 nm ranged from 1.10 to 1.35, which was lower than the $AAE_{370-520nm}$ values ranging from 1.19~1.68 that was enhanced due to the presence of BrC. The estimated $AAE_{370-660nm}$ of BrC ranged from 2.2 to 7.5 with an average of 4.22, which was fairly consistent to the values reported by previous studies. The BrC absorption at 370 nm contributed 10.4~28.4% to the total aerosol absorption, with higher contribution in winter and spring and lower in summer. Average $PM_{10}$ and $PM_{2.5}$ concentrations were $108{\pm}36$ and $24{\pm}14{\mu}g/m^3$ during AD I, respectively, and $164{\pm}66$ and $43{\pm}26{\mu}g/m^3$ during AD II, respectively, implying the greater contribution of local pollution and/or regional pollution to $PM_{2.5}$ during the AD II. BC concentration and aerosol light absorption at 370 nm were relatively high in AD II, compared to those in AD I. Strong spectral dependence of aerosol light absorption was clearly found during the two AD events. $AAE_{370-660nm}$ of both light absorbing organic aerosols and dust particles during the AD I and II was $4.8{\pm}0.5$ and $6.2{\pm}0.7$, respectively. Higher AAE value during the AD II could be attributed to mixed enhanced urban pollution and dust aerosols. Absorption contribution by the light absorbing organic and dust aerosols estimated at 370 nm to the total light absorption was approximately 19% before and after the AD events, but it increased to 32.9~35.0% during the AD events. In conclusion, results from this study support enhancement of the aerosol light absorption due to Asian dust particles observed at the site.