• Title/Summary/Keyword: Spectral studies

Search Result 691, Processing Time 0.027 seconds

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

Quantitative Electroencephalographic Findings in Obsessive-Compulsive Disorder (강박 장애의 정량화 뇌파 소견)

  • Youn, Tak;Kwon, Jun Soo;Cho, Maeng-Je;Kim, Yong Sik;Rhi, Bou-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.216-221
    • /
    • 1996
  • The quantitative EEGs of obsessive-compulsive disorder patients were analyzed using spectral analysis and compared to age and sex-matched controls. The subjects were 19 patients(men=15, women=4) suffering from obsessive-compulsive disorder(DSM-III-R). Absolute power, relative power and interhemispheric asymmetry of EEG were used to compare obsessive-compulsive disorder patients with controls. In order to fit the EEG data to a normal distribution, a log transformation of power values of every bandwidth in each deviation was calculated prior statistical analysis. The Wilcoxon rank test was performed to compare obsessive-compulsive group to the control group. In obsessive-compulsive disorder, abnormalities of quantitative EEGs are prominent in fronto-central. These results ore compatible with other brain imaging studies of obsessive-compulsive disorder and suggested that fronto-central area plays an important role in the pathophysiology of obsessive-compulsive disorder.

  • PDF

The Microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR Peak Frequency and Amplification (한반도 남서부의 상시미동 HVSR 연구 I: 정점주파수와 증폭효과의 특성)

  • Jung, Hee-Ok;Kim, Hyoung-Jun;Jo, Bong-Gon;Park, Nam-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.541-554
    • /
    • 2010
  • Fifteen min-microtremor data sets were collected at 136 sites from a coastal area of Kunsan and 117 sites from an inland area of Jeonju located in SW Korea, and were analyzed for the HVSR (Horizontal to Vertical Spectral Ratio) of the sites. The microtremor spectra of the coastal area have stronger energy in the lower frequency range from 1-6 Hz than those of the coastal area. This result can be attributed to the effect of the waves and tides in the Keum river and the Yellow sea. Twenty four hours of measurement of the microtremor indicated that the microtremor spectrum correlates with the human activities, but the microtremor HVSR peak was observed consistently at the characteristic frequency for the site. The HVSR peaks were grouped into 4 types -"single peak", "double peak", "broad peak" or "no peak"- based on their shapes. More than 90% of the data sets exhibit peak frequencies ($F_0$) which can be easily identified. The distribution of $F_0$ reveals a close relationship with the topography and local geology of the areas, exhibiting high F0s in the hillside areas and low $F_0s$ in the reclaimed land area. While the amplitudes of microtremor HVSR peak frequencies are less than 4 in the downstream of the inland area, those of the recently reclaimed land in the coastal area are extremely high (more than 10). The results of this study indicate that detailed HVSR studies are essential for the earthquake hazard reduction of reclaimed lands.

Watching environment-independent color reproduction system development based on color adaption (색순응을 기반하여 관촬환경에 독립한 색재현 시스템 개발)

  • An, Seong-A;Kim, Jong-Pil;An, Seok-Chul
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.43-53
    • /
    • 2003
  • As information-communication network has been developed rapidly, internet users' circumstances also have been changed for the better, in result, more information can be applied than before. At this moment, there are many differences between real color and reappeared color on the CRT. When we observe a material object, our eyes perceive the multiplied form of light sources and nature spectral reflection. However, when the photographed signal is reappeared, illumination at that time of photographing and spectral reflection of a material object are converted into signal, and this converted RGB signal is observed on the CRT under another illumination. At this time, RGB signal is the reflected result of illumination at that time of photographing Therefore, this signal is influenced by the illumination at present, so it can be perceived another color. To accord the colro reflections of another color source, the study has been reported by S.C.Ahn$^{[1]}$, which study is about the color reapperarance system using neuron network. Furthermore, color reappearing method become independent of its circumstances has been reported by Y.Miyake$^{[2]}$. This method can make the same illuminations even if the observe circumstances are changed. To assume the light sources of observe circumstances, the study about color reappearing system using CCD sensor also have been studied by S.C.Ahn$^{[3]}$. In these studies, a population is fixed, first, on ab coordinates of CIE L${\ast}$a${\ast}$b${\ast}$. Then, color reappearing can be possible using every population and existing digital camera. However, the color is changed curvedly, not straightly, according to value's changes on the ab coordinates of CIE L${\ast}$a${\ast}$b. To solve these problems in this study, first of all, Labeling techniques are introduced. Next, basis color-it is based on Munsell color system-is divided into 10 color fields. And then, 4 special color- skin color, grass color, sky color, and gray-are added to the basis color. Finally, 14 color fields are fixed. After analyzing of the principle elements of new-defined-color fields' population, utility value and propriety value are going to be examined in 3-Band system from now on.

  • PDF

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

Performance Analysis of Adaptive Channel Estimation Scheme in V2V Environments (V2V 환경에서 적응적 채널 추정 기법에 대한 성능 분석)

  • Lee, Jihye;Moon, Sangmi;Kwon, Soonho;Chu, Myeonghun;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.26-33
    • /
    • 2017
  • Vehicle communication can facilitate efficient coordination among vehicles on the road and enable future vehicular applications such as vehicle safety enhancement, infotainment, or even autonomous driving. In the $3^{rd}$ Generation Partnership Project (3GPP), many studies focus on long term evolution (LTE)-based vehicle communication. Because vehicle speed is high enough to cause severe channel distortion in vehicle-to-vehicle (V2V) environments. We can utilize channel estimation methods to approach a reliable vehicle communication systems. Conventional channel estimation schemes can be categorized as least-squares (LS), decision-directed channel estimation (DDCE), spectral temporal averaging (STA), and smoothing methods. In this study, we propose a smart channel estimation scheme in LTE-based V2V environments. The channel estimation scheme, based on an LTE uplink system, uses a demodulation reference signal (DMRS) as the pilot symbol. Unlike conventional channel estimation schemes, we propose an adaptive smoothing channel estimation scheme (ASCE) using quadratic smoothing (QS) of the pilot symbols, which estimates a channel with greater accuracy and adaptively estimates channels in data symbols. In simulation results, the proposed ASCE scheme shows improved overall performance in terms of the normalized mean square error (NMSE) and bit error rate (BER) relative to conventional schemes.

A Study on the Spectral Information and Reflectance Characteristic of Levee Crack (제방 균열의 분광정보 및 반사율 특성에 관한 연구)

  • Kim, Jong-Tae;Lee, Chang-Hun;Kang, Joon-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.17-24
    • /
    • 2020
  • This study examined the spectral information and reflectance of cracks of an embankment with drone-based hyperspectral imagery for crack detection. A Nano-Hyperspec mounted on a drone was used as a sensor, and hyperspectral videos of different intensities of illumination of the cracks on the embankment located in the downstream of Andong-Dam were obtained. An analysis of the data value of the illumination and peak data-value, the coefficients of determination were calculated to be 0.9864 of the uncracked areas and 0.9851 of the cracked area. The reflectance of each area showed a similar value and pattern, regardless of the intensity of illumination. This result may have occurred because the reference values of the white reference as the calculation criteria of reflectance varied according to the intensity of illumination. The reflectance at the cracked area was 5.65% lower in visible light and 4.58% lower in near-infrared light than that at the uncracked area. The detection of cracks may offer more precise results in further studies when the gimbal direction and camera angles of the drone are calibrated. Because hyperspectral imagery enables the detection of crack depths and types of clay minerals, which are difficult to identify in general RGB imagery, it can serve as a preemptive measure for evaluating the embankment stability.

The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification (CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석)

  • Kwak, Taehong;Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.959-971
    • /
    • 2019
  • CNN (Convolutional Neural Network) is one representative deep learning algorithm, which can extract high-level spatial and spectral features, and has been applied for hyperspectral image classification. However, one significant drawback behind the application of CNNs in hyperspectral images is the high dimensionality of the data, which increases the training time and processing complexity. To address this problem, several CNN based hyperspectral image classification studies have exploited PCA (Principal Component Analysis) for dimensionality reduction. One limitation to this is that the spectral information of the original image can be lost through PCA. Although it is clear that the use of PCA affects the accuracy and the CNN training time, the impact of PCA for CNN based hyperspectral image classification has been understudied. The purpose of this study is to analyze the quantitative effect of PCA in CNN for hyperspectral image classification. The hyperspectral images were first transformed through PCA and applied into the CNN model by varying the size of the reduced dimensionality. In addition, 2D-CNN and 3D-CNN frameworks were applied to analyze the sensitivity of the PCA with respect to the convolution kernel in the model. Experimental results were evaluated based on classification accuracy, learning time, variance ratio, and training process. The size of the reduced dimensionality was the most efficient when the explained variance ratio recorded 99.7%~99.8%. Since the 3D kernel had higher classification accuracy in the original-CNN than the PCA-CNN in comparison to the 2D-CNN, the results revealed that the dimensionality reduction was relatively less effective in 3D kernel.

Application of Multi-satellite Sensors to Estimate the Green-tide Area (황해 부유 녹조 면적 산출을 위한 멀티 위성센서 활용)

  • Kim, Keunyong;Shin, Jisun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.339-349
    • /
    • 2018
  • The massive green tide occurred every summer in the Yellow Sea since 2008, and many studies are being actively conducted to estimate the coverage of green tide through analysis of satellite imagery. However, there is no satellite images selection criterion for accurate coverage calculation of green tide. Therefore, this study aimed to find a suitable satellite image from for the comparison of the green tide coverage according to the spatial resolution of satellite image. In this study, Landsat ETM+, MODIS and GOCI images were used to coverage estimation and its spatial resolution is 30, 250 and 500 m, respectively. Green tide pixels were classified based on the NDVI algorithm, the difference of the green tide coverage was compared with threshold value. In addition, we estimate the proportion of the green tide in one pixel through the Linear Spectral Unmixing (LSU) method, and the effect of the difference of green tide ratio on the coverage calculation were evaluated. The result of green tide coverage from the calculation of the NDVI value, coverage of green tide usually overestimate with decreasing spatial resolution, maximum difference shows 1.5 times. In addition, most of the pixels were included in the group with less than 0.1 (10%) LSU value, and above 0.5 (50%) LSU value accounted for about 2% in all of three images. Even though classified as green tide from the NDVI result, it is considered to be overestimated because it is regarded as the same coverage even if green tide is not 100% filled in one pixel. Mixed-pixel problem seems to be more severe with spatial resolution decreases.

Yearly Estimation of Rice Growth and Bacterial Leaf Blight Inoculation Effect Using UAV Imagery (무인비행체 영상 기반 연차 간 벼 생육 및 흰잎마름병 병해 추정)

  • Lee, KyungDo;Kim, SangMin;An, HoYong;Park, ChanWon;Hong, SukYoung;So, KyuHo;Na, SangIl
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.75-86
    • /
    • 2020
  • The purpose of this study is to develop a technology for estimating rice growth and damage effect according to bacterial leaf blight using UAV multi-spectral imagery. For this purpose, we analyzed the change of aerial images, rice growth factors (plant height, dry weight, LAI) and disease effects according to disease occurrence by using UAV images for 3 rice varieties (Milyang23, Sindongjin-byeo, Saenuri-byeo) from 2017 to 2018. The correlation between vegetation index and rice growth factor during vegetative growth period showed a high value of 0.9 or higher each year. As a result of applying the growth estimation model built in 2017 to 2018, the plant height of Milyang23 showed good error withing 10%. However, it is considered that studies to improve the accuracy of other items are needed. Fixed wing unmanned aerial photographs were also possible to estimate the damage area after 2 to 4 weeks from inoculation. Although sensing data in the multi-spectral (Blue, Green, Red, NIR) band have limitations in early diagnosis of rice disease, for rice varieties such as Milyang23 and Sindongjin-byeo, it was possible to construct the equation of infected leaf area ratio and rice yield estimation using UAV imagery in early and mid-September with high correlation coefficient of 0.8 to 0.9. The results of this study are expected to be useful for farming and policy support related to estimating rice growth, rice plant disease and yield change based on UAV images.