• Title/Summary/Keyword: Spectral element model

Search Result 100, Processing Time 0.024 seconds

A study on seismic behaviour of masonry mosques after restoration

  • Altunisik, Ahmet C.;Bayraktar, Alemdar;Genc, Ali F.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1331-1346
    • /
    • 2016
  • Historical masonry structures have an important value for cultures and it is essential for every society to strengthen them and confidently transfer to the future. For this reason, determination of the seismic earthquake response, which is the most affecting factor to cause the damage at these structures, gain more importance. In this paper, the seismic earthquake behaviour of Kaya Çelebi Mosque, which is located in Turkey and the restoration process has still continued after 2011 Van earthquake, is determined. Firstly the dynamic modal analysis and subsequently the seismic spectral analysis are performed using the finite element model of the mosque constructed with restoration drawings in SAP2000 program. Maximum displacements, tensile, compressive and shear stresses are obtained and presented with contours diagrams. Turkish Earthquake Code and its general technical specifications are considered to evaluate the structural responses. After the analyses, it is seen that the displacements and compressive/shear stresses within the code limits. However, tension stresses exceeded the maximum values at some local regions. For this mosque, this is in tolerance limits considering the whole structure. But, it can be said that the tension stresses is very important for this type of the structures, especially between the stone and mortar. So, some additional strengthening solutions considering the originality of historical structures may be applicable on maximum tensile regions.

Stability of the Divergent Barotropic Rossby-Haurwitz Wave (발산 순압 로스비-하우어비츠 파동의 안정성)

  • Jeong, Han-Byeol;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Stability of the barotropic Rossby-Haurwitz wave is investigated using the numerical models on the global domain. The Rossby-Haurwitz wave under investigation is composed of the basic zonal flow of super-rotation and a finite amplitude spherical harmonic wave. The Rossby-Haurwitz wave is given as either steady or unsteady wave by adjusting the strength of the super-rotating zonal flow. Stability as well as the growth rate of the wave in the numerical simulation is determined by comparing the perturbation amplitude at two different time stages. Unstable modes of the Rossby-Haurwitz wave exhibited a horizontal structure composing of various zonal-wavenumber components. The vorticity perturbation for some modes showed a discontinuity around the area of weak flow, which was found robust regardless of the horizontal resolution of the model. Fourier finite element model was shown to generate the unstable mode in earlier stage of the time integration due to less accuracy compared to the spherical harmonic spectral model. Taking the overall accuracy of the models into consideration, the time by which the unstable mode begin to dominate over the spherical harmonic wave was estimated.

Fatigue Strength Analysis of Pontoon Type VLFS Using Spectral Method (통계해석법에 의한 폰툰식 VLFS의 피로강도해석)

  • Park, Seong-Whan;Han, Jeong-Woo;Han, Seung-Ho;Ha, Tae-Bum;Lee, Hong-Gu;Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.351-361
    • /
    • 2006
  • The fatigue strength analysis of VLFS is carried out by using a 3-dimensional plate finite element model with a zooming technology which performs the modeling of wide portions of the structure by a coarse mesh but the concerned parts by a very fine mesh of t by t level. And a stepwise substructure modeling technique for global loading conditions is applied which uses the motion response of the global structure from 2-D plate hydroelastic analysis as the enforcing nodal displacements of the concern 3-D structural zooming model. Seven incident wave angles and whole ranges of frequency domains of wave spectrum are considered. In order to consider the effect of breakwater, the modified JONSWAP wave spectrum is used. Applying the wave data of installation region, the longterm spectrum analysis is done based on stochastic process and the fatigue life of the structure is estimated. Finally some design considerations from the view point of fatigue strength analysis of VLFS are discussed.

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

Health Monitoring Method for Bridges Using Ambient Vibration Data due to Traffic Loads (교통하중에 의한 상시미진동을 이용한 교량의 건전도 감시기법)

  • 이종원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.218-225
    • /
    • 2000
  • This paper presents intermediate results of an on-going research for identification of the modal and the stiffness parameters of a bridge based on the ambient vibration data caused by the traffic loadings. The main algorithms consist of the random decrement method incorporating band-pass filters for estimation of the free vibration signals the cross spectral density method for identification of the modal parameters and the neural networks technique for estimation of the element-level stiffness changes. An experimental study is carried out on a scaled bridge model with a composite section subjected to various moving vehicle loadings. Vertical accelerations are measured at several locations on the girder. The estimated frequencies and mode shapes are found to be well-compared with those obtained from the impact tests. The estimated stiffness changes using the neural networks are found to be very good for the case with the simulated data. However the accuracy is found to be not quite satisfactory for the case with the experimental data particularly for the small value of the stiffness changes.

  • PDF

Multi-cracking modelling in concrete solved by a modified DR method

  • Yu, Rena C.;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.371-388
    • /
    • 2004
  • Our objective is to model static multi-cracking processes in concrete. The explicit dynamic relaxation (DR) method, which gives the solutions of non-linear static problems on the basis of the steady-state conditions of a critically damped explicit transient solution, is chosen to deal with the high geometric and material non-linearities stemming from such a complex fracture problem. One of the common difficulties of the DR method is its slow convergence rate when non-monotonic spectral response is involved. A modified concept that is distinct from the standard DR method is introduced to tackle this problem. The methodology is validated against the stable three point bending test on notched concrete beams of different sizes. The simulations accurately predict the experimental load-displacement curves. The size effect is caught naturally as a result of the calculation. Micro-cracking and non-uniform crack propagation across the fracture surface also come out directly from the 3D simulations.

Structural Damage Identification by Using Spectral Element Model (스펙트럴요소 모델을 이용한 구조손상규명)

  • 민승규;김정수;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.366-373
    • /
    • 2003
  • This paper introduces a frequency-domain method of structural damage identification. It is formulated in a general form to include the nonlinearity of damage magnitudes from the dynamic stiffness equation of motion for a beam structure. The appealing features of the present damage identification method are: (1) it requires only the frequency response functions measured from damaged structure as the input data, and (2) it can locate and quantify many local damages at the same time. The feasibility of the present damage identification method is tested through some numerically simulated damage identification analyses for a cantilevered beam with three piece-wise uniform damages.

  • PDF

Development of Analysis Method and Computer Program for Train-induced Ground Vibration (철도연변 지반진동 예측기법 및 전산프로그램 개발)

  • 황선근;엄기영;고태훈;이종재
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.203-210
    • /
    • 2000
  • Recently, environmental vibration by train operation has been getting such an attention that the ISO puts it into the environmental vibration regulation. However, the reasonable and efficient countermeasures against such a kind of vibration is not well established, especially in residential areas near the railroad. Therefore, it is very important to estimate the ground vibration induced by the train operation for the design and construction of track supporting structures as well as structures near the track. In this study a model estimating dynamic load on track due to train operation and analysis technique of propagation of ground vibration were developed. Futhermore, the estimated vibration from this model was compared with the actual measurement data in the field and found to be reasonably acceptable.

  • PDF

Field monitoring of wind effects on a super-tall building during typhoons

  • Zhi, Lunhai;Li, Q.S.;Wu, J.R.;Li, Z.N.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.253-283
    • /
    • 2011
  • This paper presents the field measurement results of wind effects on a super-tall building (CITIC Plaza, 391 m high) located in Guangzhou. The field data such as wind speed, wind direction and acceleration responses were simultaneously and continuously recorded from the tall building by a wind and vibration monitoring system during two typhoons. The typhoon-generated wind characteristics including turbulence intensity, gust factor, peak factor, turbulence integral length scale and power spectral density of fluctuating wind speed were presented and discussed. The dynamic characteristics of the tall building were determined based on the field measurements and compared with those calculated from a 3D finite element model of the building. The measured natural frequencies of the two fundamental sway modes of the building were found to be larger than those calculated. The damping ratios of the building were evaluated by the random decrement technique, which demonstrated amplitude-dependent characteristics. The field measured acceleration responses were compared with wind tunnel test results, which were found to be consistent with the model test data. Finally, the serviceability performance of the super-tall building was assessed based on the field measurement results.

Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.127-139
    • /
    • 2018
  • The GOCI atmospheric correction overland surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.