• Title/Summary/Keyword: Spectral disperser

Search Result 4, Processing Time 0.016 seconds

WIDEBAND SPECTRAL DISPERSER MADE OF ZnS FOR EXOPLANET CHARACTERIZATION USING SPACE-BORNE TELESCOPES

  • Enya, Keigo;Fujishiro, Naofumi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.343-345
    • /
    • 2017
  • We present the development of a spectral dispersion device for wideband spectroscopy for which the primary scientific objective is the characterization of transiting exoplanets. The principle of the disperser is simple: a grating is fabricated on the surface of a prism. The direction of the spectral dispersion power of the prism is crossed with the grating. Thus, the prism separates the spectrum into individual orders while the grating produces a spectrum for each order. In this work, ZnS was selected as the material for the cross disperser, which was designed to cover the wavelength region, ${\lambda}=0.6-13{\mu}m$, with a spectral resolving power, $R{\geq}50$. A disperser was fabricated, and an evaluation of its surface was conducted. Two spectrometer designs, one adopting ZnS (${\lambda}=0.6-13{\mu}m$, $R{\geq}300$) and the other adopting CdZnTe (${\lambda}=1-23{\mu}m$, $R{\geq}250$), are presented. The spectrometers, each of which has no moving mechanical parts, consist simply of a disperser, a focusing mirror, and a detector.

The Mechanical and Cryogenic Design of IGRINS

  • Park, Chan;Lee, Sung-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.154.1-154.1
    • /
    • 2011
  • IGRINS (Immersion Grating Infrared Spectrometer) is a cross-dispersed high resolution near-infrared spectrograph whose primary disperser is a silicon immersion grating (SIG) and cross-dispersers are two volume phase holographic gratings (VPHG). IGRINS covers the full ranges of H and K astronomical wavelength bands at a single exposure with the spectral resolution of 40,000. The overall layout of the IGRINS Cryostat is a $960{\times}600{\times}380$ cubic millimeter rectangular box and the whole optical train is sitting on an $880{\times}520{\times}50\;mm^3$ rectangular Optical Bench. The total volume of the instrument has been revolutionarily reduced and remained compact for the spectral coverage and sensitivity of a high resolution spectrograph in infrared. We, in this presentation, introduce the design models, the structural and thermal analysis results of the mechanics and cryogenics of IGRINS.

  • PDF

AKARI IRC SURVEY OF THE LARGE MAGELLANIC CLOUD: AN OVERVIEW OF THE SURVEY AND A BRIEF DESCRIPTION OF THE POINT SOURCE CATALOG

  • Ita, Yoshifusa;Kato, Daisuke;Onaka, Takashi;AKAR.LMC survey team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.165-169
    • /
    • 2012
  • We observed an area of 10 $deg^2$ of the Large Magellanic Cloud using the Infrared Camera (IRC) onboard AKARI. The observations were carried out using five imaging filters (3, 7, 11, 15, and $24{\mu}m$) and the prism disperser ($2-5{\mu}m$, ${\lambda}/{\Delta}{\lambda}{\sim}20$) equipped in the IRC. This paper presents an outline of the survey project and also describes very briefly the newly compiled near- to mid-infrared point source catalog. The $10{\sigma}$ limiting magnitudes are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15 and $24{\mu}m$, respectively. The photometric accuracy is estimated to be about 0.1 mag at $3.2{\mu}m$ and 0.06 - 0.07 mag in the other bands. The position accuracy is 0.3" at 3.2, 7 and $11{\mu}m$ and 1.0" at 15 and $24{\mu}m$. The sensitivities at 3.2, 7, and $24{\mu}m$ are roughly comparable to those of the Spitzer SAGE LMC point source catalog, while the AKARI catalog provides the data at 11 and $15{\mu}m$, covering the near- to mid-infrared spectral range continuously.

CONSTRUCTION OF THE BOAO ECHELLE SPECTROGRAPH (BOES) (보현산천문대 고분산 에셀분광기(BOES) 제작)

  • KIM KANG-MIN;JANG JEONG GYUN;CHUN MOO-YOUNG;PARK BYEONG-GON;HYUNG SIEK;HAN INWOO;YOON TAE SEOG;VOGT STEVEN S.
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.119-126
    • /
    • 2000
  • The BOES (BOAO Echelle Spectrograph), a fiber-fed echelle spectrograph of the BOAO 1.8 m telescope, has been designed and now is being manufactured. The BOES follows a white pupil design collimated with two off-axis parabolic mirrors. The 136mm collimating beam leaving the 41.59 grooves/mm R4 echelle grating is refocused near the narrow folding mirror. Through the two cross-disperser prisms and $\phi250 mm(f/1.5)$ transmission camera, the beam images on EEV $2k\times4k$ CCD. The BOES can take the wavelength range of 3700 to $10100{\AA}$ at a single spot with spectral resolution R = 20000 to 40000 depending on the fiber set employed. We describe the key sciences and performance, current status of construction, and future plan of the BOES.

  • PDF