• 제목/요약/키워드: Spectral density

검색결과 826건 처리시간 0.025초

Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun;Wang, You-Wu
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.209-230
    • /
    • 2016
  • The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

Correlation analysis of the wind of a cable-stayed bridge based on field monitoring

  • Li, Hui;Laima, Shujin;Li, Na;Ou, Jinping;Duan, Zhondong
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.529-556
    • /
    • 2010
  • This paper investigates the correlation of wind characteristics monitored on a cable-stayed bridge. Total five anemoscopes are implemented into the bridge. Two out of 5 anemoscopes in inflow and two out of 5 anemoscopes in wake-flow along the longitudinal direction of the bridge are installed. Four anemoscopes are respectively distributed at two cross-sections. Another anemoscope is installed at the top of the tower. The correlation of mean wind speed and direction, power spectral density, the turbulent intensity and integral length of wind in flow at two cross-sections are investigated. In addition, considering the non-stationary characteristics of wind, the spatial correlation in time-frequency is analyzed using wavelet transform and different phenomenon from those obtained through FFT is observed. The time-frequency analysis further indicates that intermittence, coherence structures and self-similar structures are distinctly observed from fluctuant wind. The flow characteristics around the bridge deck at two positions are also investigated using the field measurement. The results indicate that the mean wind speed decrease when the flow passing through the deck, but the turbulence intensity become much larger and the turbulence integral lengths become much smaller compared with those of inflow. The relationship of RMS (root mean square) of wake-flow and the mean wind speed of inflow is approximately linear. The special structures of wake-flow in time-frequency domain are also analyzed using wavelet transform, which aids to reveal the forming process of wake-flow.

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster

  • Park, Sun-Kyung;Min, Kyung-Chul;Lee, Choong-Keun;Hong, Soon-Kang;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2595-2602
    • /
    • 2009
  • Hexamer cluster of N,N-dimethylformamide(DMF) based on the crystal structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties in the density functional force field. The geometry (point group $C_i$) of fully optimized hexamer clustered DMF shows quite close similarity to the crystal structure weakly intermolecular hydrogen bonded each other. Stretching force constants for intermolecular hydrogen bonded methyl and formyl hydrogen atoms with nearby oxygen atom, methyl C–H${\cdots}$O and formyl C–H${\cdots}$O, were obtained in 0.055 $\sim$ 0.11 and $\sim$ 0.081 mdyn/$\AA$, respectively. In-plane bending force constants for hydrogen bonded methyl hydrogen atoms were in 0.25 $\sim$ 0.33, and for formyl hydrogen $\sim$ 0.55 mdynÅ. Torsion force constants through hydrogen bonding for methyl hydrogen atoms were in 0.038 $\sim$ 0.089, and for formyl hydrogen atom $\sim$ 0.095 mdynÅ. Calculated Raman and infrared spectral features of single and hexamer cluster represent well the experimental spectra of DMF obtained in the liquid state. Noncoincidence between IR and Raman frequency positions of stretching C=O, formyl C–H and other several modes was interpreted in terms of the intermolecular vibrational coupling in the condensed phase.

Theoretical construction of solar wind proton temperature anisotropy versus beta inverse correlation

  • 서정준;;김관혁;이동훈
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.118.1-118.1
    • /
    • 2012
  • In situ observations from the Wind spacecraft that statistically analyzed the solar wind proton at 1 AU has indicated that the measured proton temperature anisotropies seems to be regulated by the oblique instabilities (the mirror and oblique firehose). This result is in contradiction with the prediction of linear kinetic theory that the ion-cyclotron (for ${\beta}_{\parallel}$ < 2) and parallel firehose (for ${\beta}_{\parallel}$ <10) would dominate over the oblique instabilities. Various kinds of physical mechanisms have been suggested to explain this disagreement between the observations and linear theory. All of the suggestions consider the solar wind as a unoform magnetized plasma. However the real space environment is replete with the intermediate spatio-temporal scale variations associated with various physical quantities, such as the magnetic field intensity and the solar wind density. In this paper we present that the pervasive intermediate-scale temporal variation of the local magnetic field intensity can lead to the modification of the proton temperature anisotropy versus beta inverse correlation for temperature-anisotropy-driven instabilities. By means of quasilinear kinetic theory involving such temporal variation, we construct the simulated solar wind proton data distribution associated the magnetic fluctuations in (${\beta}_{\parallel}$, $T_{\perp}/T_{\parallel}$) space. It is shown that the theoretically simulated proton distribution and a general trend of the enhanced fluctuations bounded by the oblique instabilities are consistent with in situ observations. Furthermore, the measure magnetic compressibility can be accounted for by the magnetic spectral signatures of the unstable modes.

  • PDF

두 개의 마이크로폰의 부착된 임피던스관법을 이용한 차음시트의 음향투과손실 측정 (Sound Transmission Loss Measurement for Sound Isolation Sheets by Two-Microphone Impedance Tube Method)

  • 이동훈;용호택;이승
    • 설비공학논문집
    • /
    • 제14권1호
    • /
    • pp.63-72
    • /
    • 2002
  • The main objective of this study is to propose a practical two-microphone impedance tube method to measure the sound transmission loss for flexible sound isolation sheets without the use of the time-consuming and expensive reverberation room. This method was based on the sound decomposition theory developed by Seybert using the spectral density functions of the incident and reflected sound waves. In order to verify the validity of the experimental results, the measured sound transmission losses from the proposed method were compared with the measured data from the reverberation room method and the calculated data from the theory satisfying the mass law of sound isolation material. The resulted trends of the sound transmission losses versus frequencies for several different sound isolation sheets were almost same for each other and agreed quite well in both methods except at some low frequency region. From the experimental results, it was found that the accuracy of sound isolation capability obtained by two-microphone impedance tube method depends upon the microphone spacing, the distance from the first microphone to the test sample surface and the test sample location.

디지털 보청기를 위한 음향궤환 몇 잡음 제거 알고리즘 (A Combined Acoustic Feedback and Noise Cancellation Algorithm for Digital Hearing Aids)

  • 이행우
    • 한국통신학회논문지
    • /
    • 제35권11C호
    • /
    • pp.911-916
    • /
    • 2010
  • 본 논문에서는 디지털 보청기의 음향궤환 및 장음을 제거하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 궤환신호를 제거하기 위한 궤환제거기와 잡음신호를 감소시키기 위한 잡음제거기를 결합한 구조로 구성된다. 여기서 궤환제거기는 일반적인 적응 FIR 필터를 사용하여 구현하고 잡음제거기는 Wiener 해법을 이용하여 주파수 영역에서 구현한다. 이 잡음제거는 각 신호들의 전력 스펙트럼 밀도를 구하여 전달함수를 표현하는 것으로 이루어진다. 본 연구에서 제안한 궤환 및 잡음제거기의 성능을 검증하기 위하여 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 적응 알고리즘을 사용하면 경로이득 0dB에서 기존의 알고리즘을 사용하는 경우보다 평균 10.85dB의 출력 SNR, 경로이득 6dB에서 평균 11.04dB의 출력 SNR을 향상시킬 수 있는 것으로 확인하였다.

죽변항 수역의 장주기 수면진동 특성 (Characteristics of Long Period Resonant Oscillations around Chukpyon Harbor)

  • 정원무;박우선;채장원
    • 한국해안해양공학회지
    • /
    • 제8권2호
    • /
    • pp.193-203
    • /
    • 1996
  • 죽변항 내외의 2개 정점에 수압식 파고계를 설치하여 동계의 악천후시 현장관측을 실시하고 장주기 부진동 특성을 파악하였다. 관측자료 분석에 의한 공진주기 해석시 기존의 항내 정점에서 스펙트럼 에너지가 최대인 주기 및 그 분포 형태를 기준한 방법외에 항외에 대한 항내 정점에서의 상대 증폭비를 기준한 방법을 도입하였다. 자료 분석과 수치실험 결과 죽변항 수역의 제1 공진 모드는 약 12분에서 약 7배의 증폭비를 가지며 제2 공진 모드는 약 6분인 것으로 나타났다. 관측기간중 항내에서의 수면진동폭은 약 10-20 cm로 나타났으며 황천시 항내 정점에서 단주기파의 군파 효과 또는 이 성분이 장주기파에 중첩된 영향에 의한 것으로 생각되는 2-3분 부근의 부진동이 출현하였다. 단주기파와 장주기파에서 통상적으로 사용되는 반사율을 선형적으로 연결시킨 수치실험을 통하여 3분 이하 부진동에서의 증폭비를 비교적 잘 재현하였다.

  • PDF

소형 고정익기의 신호기반 조종면 고장진단 알고리즘 (Signal-based Fault Diagnosis Algorithm of Control Surfaces of Small Fixed-wing Aircraft)

  • 김지환;구윤성;이형철
    • 한국항공우주학회지
    • /
    • 제40권12호
    • /
    • pp.1040-1047
    • /
    • 2012
  • 본 논문에서는 소형 고정익기의 고장 발생시기와 부품 교체시기를 예측하여 유지보수 비용을 절감하고 정비 효율을 높이기 위하여 ANPSD와 PCA, 그리고 GC 방법을 이용하여 조종면의 고장에 대하여 이를 검출하고 위치와 정도를 분리하는 알고리즘을 제안하였다. 이때 ANPSD는 주파수 영역에서의 진동 분석을, PCA는 ANPSD의 중요 정보 추출을, GC는 고장 검출 및 분리 시의 오류 최소화를 위하여 사용되었다. 또한 모형 항공기에 가속도 센서를 부착하여 정상인 경우와 힌지 고장이 발생한 경우에 대하여 실제로 측정한 결과에 이와 같은 알고리즘을 적용한 결과 해당 알고리즘이 고장을 검출하고 분리하는 데에 적합함을 보였으며 제안된 알고리즘을 적용할 경우에 발생 가능한 문제들에 대하여 이를 완화할 수 있는 대응책을 함께 제시하였다.