• Title/Summary/Keyword: Spectral characteristic

Search Result 291, Processing Time 0.027 seconds

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Fabrication of reflectometer for vacuum ultraviolet spectral characteristic measurements of optical component (광학부품의 진공자외선특성 측정용 분광반사율계 제작)

  • 신동주;김현종;이인원
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • We fabricated a vacuum ultraviolet spectre-reflectometer which consists of a deuterium light source, a vacuum monochromator, and a sample chamber and detector module. The operation was performed in the ultraviolet spectral ranges between 115 nm and 330 nm at the vacuum pressure of 3.0 ${\times}$ 10$^{-4}$ Pa. The wavelength of the vacuum monochromator was calibrated with the line spectrum of a low pressure Mercury lamp of 253.652 nm and 184.95 nm wavelengths, and its resolution was 0.012 nm, and the precision of wavelength was $\pm$ 0.03 nm. With this reflectometer and a deuterium lamp, we measured the spectral regular transmittance and reflectance of materials(MgF$_2$, CaF$_2$, BaF$_2$, SiO$_2$, Sapphire) used as optical components over the spectral range between 115 nm and 230 nm.

A Perceptual Audio Coder Based on Temporal-Spectral Structure (시간-주파수 구조에 근거한 지각적 오디오 부호화기)

  • 김기수;서호선;이준용;윤대희
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • In general, the high quality audio coding(HQAC) has the structure of the convertional data compression techniques combined with moodels of human perception. The primary auditory characteristic applied to HQAC is the masking effect in the spectral domain. Therefore spectral techniques such as the subband coding or the transform coding are widely used[1][2]. However no effort has yet been made to apply the temporal masking effect and temporal redundancy removing method in HQAC. The audio data compression method proposed in this paper eliminates statistical and perceptual redundancies in both temporal and spectral domain. Transformed audio signal is divided into packets, which consist of 6 frames. A packet contains 1536 samples($256{\times}6$) :nd redundancies in packet reside in both temporal and spectral domain. Both redundancies are elminated at the same time in each packet. The psychoacoustic model has been improved to give more delicate results by taking into account temporal masking as well as fine spectral masking. For quantization, each packet is divided into subblocks designed to have an analogy with the nonlinear critical bands and to reflect the temporal auditory characteristics. Consequently, high quality of reconstructed audio is conserved at low bit-rates.

  • PDF

DEVELOPMENT OF QUALITY EVALUATION SYSTEM FOR PEANUT WITH POD USING OPTICAL METHODS

  • Morta, Kazuo;Taharazako, Shoji;Zhang, Han;Maekaji, Kenji;Ikeda, Hirohiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1354-1363
    • /
    • 1993
  • Optical methods were developed to examine their feasibility for quality evaluation of peanut with pod. Surface color and internal quality of peanut were measured without contact. The surface color of peanut was measured by light reflectance at a region of visible wavelengths. Its characteristic was high correlated with a visual grading of peanut. A trial machine for the color grading of peanut was developed using an optical sensor and it was considered to compare with the visual grading. The spectral reflectance at a region of near infrared wavelengths from 1,200 to 2,500nm was measured , and the chemical components of peanut were related to spectral reflectance at special wavelengths. The protein, fat and moisture contents of peanut were estimated by the near infrared methods. An infrared imaging method was developed to evaluate the internal quality of peanut with pod. As thermal characteristic of peanut with pod was deeply related to internal quality , the quality of peanut can be evaluated by temperature changes on the surface of peanut. Measurement of surface color, near infrared reflectance and thermal imaging were shown to be very effective in grading of peanut with pod.

  • PDF

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

Speech Active Interval Detection Method in Noisy Speech (잡음음성에서의 음성 활성화 구간 검출 방법)

  • Lee, Kwang-Seok;Choo, Yeon-Gyu;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.779-782
    • /
    • 2008
  • It is important to detect speech active interval from Noisy Speech in speech communication and speech recognition. In this research, we propose characteristic parameter with combining spectral Entropy for detect speech active interval in Noisy Speech, and compare performance of speech active interval based on energy. The results shows that analysis using proposed characteristic parameter is higher performance the others in noisy environment.

  • PDF

DEVS Modeling and Simulation for spectral characteristic on the strip of urin examination (뇨 분석용 strip의 분광학적 특성분석을 위한 DEVS 모델링 및 시뮬레이션)

  • Cho, Y.J.;Kim, J.H.;Nam, K.G.;Kim, J.H.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.145-149
    • /
    • 1997
  • This paper describes a methodology for the development of models of discrete event system. The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can coupled discrete event system models within a framework. The structure employs the discrete event specification formalism for the discrete event system models. The proposed formal structure has been applied to develop a discrete event specification model for the complex spectral density analysis of strip for urin analyzer system. For this, spectral density data of strip is partitioned into a set of Phases based on events identified through urine spectrophotometry. For each phase, a continuous system of the continuous model for the urine spectral density analysis has been simulated by programmed C++. To validate this model, first develop the discrets event specification model, then simulate the model in the DEVSIM++ environment. It has the similar simulation results for the data obtained from the continuous system simulation. The comparison shows that the discrete event specification model represents dynamics of the urine spectral density at each phase.

  • PDF

Improvement of Synthetic Speech Quality using a New Spectral Smoothing Technique (새로운 스펙트럼 완만화에 의한 합성 음질 개선)

  • 장효종;최형일
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1037-1043
    • /
    • 2003
  • This paper describes a speech synthesis technique using a diphone as an unit phoneme. Speech synthesis is basically accomplished by concatenating unit phonemes, and it's major problem is discontinuity at the connection part between unit phonemes. To solve this problem, this paper proposes a new spectral smoothing technique which reflects not only formant trajectories but also distribution characteristics of spectrum and human's acoustic characteristics. That is, the proposed technique decides the quantity and extent of smoothing by considering human's acoustic characteristics at the connection part of unit phonemes, and then performs spectral smoothing using weights calculated along a time axis at the border of two diphones. The proposed technique reduces the discontinuity and minimizes the distortion which is caused by spectral smoothing. For the purpose of performance evaluation, we tested on five hundred diphones which are extracted from twenty sentences using ETRI Voice DB samples and individually self-recorded samples.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.