• Title/Summary/Keyword: Spectral Method

Search Result 2,644, Processing Time 0.029 seconds

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting (커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, we propose music and voice separation using kernel sptectrogram models backfitting based on log-spectral amplitude estimator. The existing method separates sources based on the estimate of a desired objects by training MSE (Mean Square Error) designed Winer filter. We introduce rather clear music and voice signals with application of log-spectral amplitude estimator, instead of adaptation of MSE which has been treated as an existing method. Experimental results reveal that the proposed method shows higher performance than the existing methods.

A Temporal Decomposition Method Based on a Rate-distortion Criterion (비트율-왜곡 기반 음성 신호 시간축 분할)

  • 이기승
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2002
  • In this paper, a new temporal decomposition method is proposed. which takes into consideration not only spectral distortion but also bit rates. The interpolation functions, which are one of necessary parameters for temporal decomposition, are obtained from the training speech corpus. Since the interval between the two targets uniquely defines the interpolation function, the interpolation can be represented without additional information. The locations of the targets are determined by minimizing the bit rates while the maximum spectral distortion maintains below a given threshold. The proposed method has been applied to compressing the LSP coefficients which are widely used as a spectral parameter. The results of the simulation show that an average spectral distortion of about 1.4 dB can be achieved at an average bit rate of about 8 bits/Frame.

A Spectral Correlation Method for Cognitive Radio based Satellite system. (무선인지기반 위성시스템을 위한 주파수 검출방법)

  • Song, Jeong-Ik;Han, Jeo;Son, Seong-Hwan;Lee, Gyeong-Tak;Kim, Jae-Myeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • Cognitive radio, which is designed to dynamically adapt its transmission to its environments is believed to be one of the fundamental techniques for the future spectrum utilization. As the first step of cognitive radio, spectrum sensing is treated as the most important technique. In this paper, we propose a spectral correlation based detection method for spectrum sensing. Based on the cyclostationarity of communication signals, spectral correlation function is used to minimize the effect of random noise and interference. The ROC performance of conventional energy detection is shown. Simulation result show that the proposed detection method outperforms the energy detection and more suitable for spectrum sensing in cognitive radios.

  • PDF

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

A Study on the High-Order Spectral Model Capability to Simulate a Fully Developed Nonlinear Sea States

  • Young Jun Kim;Hyung Min Baek;Young Jun Yang;Eun Soo Kim;Young-Myung Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • Modeling a nonlinear ocean wave is one of the primary concerns in ocean engineering and naval architecture to perform an accurate numerical study of wave-structure interactions. The high-order spectral (HOS) method, which can simulate nonlinear waves accurately and efficiently, was investigated to see its capability for nonlinear wave generation. An open-source (distributed under the terms of GPLv3) project named "HOS-ocean" was used in the present study. A parametric study on the "HOS-ocean" was performed with three-hour simulations of long-crested ocean waves. The considered sea conditions ranged from sea state 3 to sea state 7. One hundred simulations with fixed computational parameters but different random seeds were conducted to obtain representative results. The influences of HOS computational parameters were investigated using spectral analysis and the distribution of wave crests. The probability distributions of the wave crest were compared with the Rayleigh (first-order), Forristall (second-order), and Huang (empirical formula) distributions. The results verified that the HOS method could simulate the nonlinearity of ocean waves. A set of HOS computational parameters was suggested for the long-crested irregular wave simulation in sea states 3 to 7.

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

Experimental Study of Backscattered Underwater Signals from Multiple Scatterers (다중 산란체에 의한 수중 산란신호 실험연구)

  • Kim, Eunhye;Yoon, Kwan-seob;Jungyul Na
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1E
    • /
    • pp.31-39
    • /
    • 2004
  • Backscattered underwater signals from multiple scatterers contain information regarding resolvable spatial distribution of scatterers. This experimental study describes the spectral characteristics of backscattered signal from multiple scatterers, which are regularly or randomly spaced, in terms of their amplitude and phase and a proper signal analysis that will eventually provide scatterer spacing estimation. Air-filled tubes suspended in water, steel balls and plastic tubes buried in the sediment are the multiple scatterers. The cepstrum and the spectral autocorrelation (SAC) methods were used to estimate the scatterer spacing from the backscattered signals. It was found that the SAC method could be improved by employing singular value decomposition (SVD) to extract the effective rank for the spectral components. Unlike the conventional method of estimating the density of scatterers within the insonified volume of water, this type of estimation method would provide better understanding of the spatial distribution of scatterers in the ocean.

Inverse Scattering Method Using the Moment Method in the Angular Spectral Domain (각스펙트럼 영역에서 모멘트 방법을 이용한 역산란 방법)

  • 이경수;김세윤;나정웅
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.46-55
    • /
    • 1992
  • In this paper, A spectral inversion scheme in cylinderical coordinates, appling the moment method procedure is suggested to reconstruct permittivity profiles of inhomogeneous dielectric objects. Angular spectral domain reconstruction is shown to be less sensitive to the ill-posedness due to the noise in the scattered field then the configuration reconstruction

  • PDF