• 제목/요약/키워드: Spectral Finite Element

검색결과 120건 처리시간 0.024초

러브파의 위상속도 분산정보에 관한 해석적 연구 (Analytical Study for dispersed Phase Velocity Information of Love Waves)

  • 이일화
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Kia, Mehdi;Cao, Maosen
    • Advances in concrete construction
    • /
    • 제7권3호
    • /
    • pp.183-189
    • /
    • 2019
  • In this study, it has been tried to prepare an analytical fragility curves for isolated straight continues highway bridges by considering different spectral intensity measures. A three-span concrete isolated bridge has been selected and the seismic performance of the bridge has been improved by Lead Rubber Bearing (LRB). Incremental Dynamic Analysis (IDA) is applied to the bridge in longitudinal direction. A suite of 14 earthquake ground motions from medium to sever motions are scaled and used for nonlinear time history analysis. Fragility function considers the relationship of earthquake intensity measures (IM) and probability of exceeding certain Damage State (DS). A full three dimensional finite element model of the isolated bridge has been developed and analyzed. A wide range of different intensity measures are selected and the optimal intensity measure which has the less dispersion is proposed.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제28권3호
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams

  • Du, Mengjie;Liu, Jun;Ye, Wenbin;Yang, Fan;Lin, Gao
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.179-194
    • /
    • 2022
  • The bending, buckling and free vibration responses of functionally graded material (FGM) beams are investigated semi-analytically by the scaled boundary finite element method (SBFEM) in this paper. In the concepts of the SBFEM, the dimension of computational domain can be reduced by one, therefore only the axial dimension of the beam is discretized using the higher order spectral element, which reduces the amount of calculation and greatly improves the calculation efficiency. The governing equation of FGM beams is derived in detail by the means of the principle of virtual work. Compared with the higher-order beam theory, fewer parameters and simpler control equations are used. And the governing equation is transformed into a first-order ordinary differential equation by introducing intermediate variables. Analytical solutions of the governing equation can be obtained by pade series expansion in the direction of thickness. Numerical example are compared with the numerical solutions provided by the previous researchers to verify the accuracy and applicability of the proposed method. The results show that the proposed formulations can quickly converge to the reference solutions by increasing the order of higher order spectral elements, and high accuracy can be achieved by using a small number of the elements. In addition, the influence of the structural sizes, material properties and boundary conditions on the mechanical behaviors of FG beams subjected to different load types is discussed.

Structural damage identification with power spectral density transmissibility: numerical and experimental studies

  • Li, Jun;Hao, Hong;Lo, Juin Voon
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.15-40
    • /
    • 2015
  • This paper proposes a structural damage identification approach based on the power spectral density transmissibility (PSDT), which is developed to formulate the relationship between two sets of auto-spectral density functions of output responses. The accuracy of response reconstruction with PSDT is investigated and the damage identification in structures is conducted with measured acceleration responses from the damaged state. Numerical studies on a seven-storey plane frame structure are conducted to investigate the performance of the proposed damage identification approach. The initial finite element model of the structure and measured acceleration measurements from the damaged structure are used for the identification with a dynamic response sensitivity-based model updating method. The simulated damages can be identified accurately without and with a 5% noise effect included in the simulated responses. Experimental studies on a steel plane frame structure in the laboratory are performed to further verify the accuracy of response reconstruction with PSDT and validate the proposed damage identification approach. The locations of the introduced damage are detected accurately and the stiffness reductions in the damaged elements are identified close to the true values. The identification results demonstrated the accuracy of response reconstruction as well as the correctness and efficiency of the proposed damage identification approach.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

BUBBLE STABILIZATION OF CHEBYSHEV-LEGENDRE HIGH-ORDER ELEMENT METHODS FOR THE ADVECTION-DIFFUSION EQUATION

  • Kim, Philsu;Kim, Sang Dong;Lee, Yong Hun
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.423-440
    • /
    • 2016
  • The bubble stabilization technique of Chebyshev-Legendre high-order element methods for one dimensional advection-diffusion equation is analyzed for the proposed scheme by Canuto and Puppo in [8]. We also analyze the finite element lower-order preconditioner for the proposed stabilized linear system. Further, the numerical results are provided to support the developed theories for the convergence and preconditioning.

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

DYNAMIC CHARACTERISTICS OF CYLINDRICAL SHELLS CONSIDERING FLUID-STRUCTURE INTERACTION

  • Jhung, Myung-Jo;Kim, Wal-Tae;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1333-1346
    • /
    • 2009
  • To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect.