• Title/Summary/Keyword: Spectral Characteristics

Search Result 1,513, Processing Time 0.052 seconds

Spectral Characteristics Visible and Near-infrared of Metamorphic Rocks (변성암의 분광특성)

  • 조민조;강필종;이봉주
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • The study is to analize the spectral characteristics of metamorphic rocks by their spectral reflectance curves obtained from CARY 17-D Spectrophotometer. Coarse grained rocks generally show strong absorption at 1.4 and 1.9 $\mu\textrm{m}$ due to preserved water inclusion in quartz of feldspar. The basic rocks show a broad absorption due to Fe$^{++}$ ion rich in mafic minerals. Strong absorption near 2.0$^+\mu\textrm{m}$ suggests existence of carbonate or clay minerals.

Characteristics of Spectral Reflectance in Tidal Flats

  • Ryu, Joo-Hyung;Na, Young-Ho;Choi, Jong-Kook;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.734-738
    • /
    • 2002
  • We present spectral characteristics of tidal flat sediments and algal mat that were tested in the Gomso and Saemangum tidal flats, Korea. The objective of this study is to investigate the spectral reflectance and the radar scattering modeling in the tidal flats. Ground truth data obtained in the tidal flats include grain size, soil moisture content and its variation with time, surface roughness, chlorophyll, ground leveling, and field spectral reflectance measurement. The concept of an effective exposed area (EEA) is introduced to accommodate the effect of remnant surface water, and it seriously affects the reflection of short wavelength infrared and microwave. The nin size of 0.0625 mm has been normally used as a critical size of mud and sand discrimination. But we propose here that 0.25 mm is more practical grain size criterion to discriminate by remote sensing. Algal mat is the primary product in tidal flats, and it is found to be very important to understand spectral characteristics for tidal flat remote sensing. We have also conducted radar scattering modeling, and showed L-band HV-polarization would be the most effective combination.

  • PDF

Multi-Temporal Spectral Analysis of Rice Fields in South Korea Using MODIS and RapidEye Satellite Imagery

  • Kim, Hyun Ok;Yeom, Jong Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.407-411
    • /
    • 2012
  • Space-borne remote sensing is an effective and inexpensive way to identify crop fields and detect the crop condition. We examined the multi-temporal spectral characteristics of rice fields in South Korea to detect their phenological development and condition. These rice fields are compact, small-scale parcels of land. For the analysis, moderate resolution imaging spectroradiometer (MODIS) and RapidEye images acquired in 2011 were used. The annual spectral tendencies of different crop types could be detected using MODIS data because of its high temporal resolution, despite its relatively low spatial resolution. A comparison between MODIS and RapidEye showed that the spectral characteristics changed with the spatial resolution. The vegetation index (VI) derived from MODIS revealed more moderate values among different land-cover types than the index derived from RapidEye. Additionally, an analysis of various VIs using RapidEye satellite data showed that the VI adopting the red edge band reflected crop conditions better than the traditionally used normalized difference VI.

Simulation of wind process by spectral representation method and application to cooling tower shell

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.105-117
    • /
    • 1999
  • The various spectral density functions of wind are applied in the wind process simulation by the spectral representation method. In view of the spectral density functions, the characteristics of the simulated processes are compared. The ensemble spectral density functions constructed from the simulated sample processes are revealed to have the similarity not only in global shape but also in the maximum values with the target spectral density functions with a high accuracy. For the correlation structure to be satisfied in the circumferential direction on the cooling tower shell, a new formula is suggested based on the mathematical expression representing the circumferential distribution of the wind pressure on the cooling tower shell. The simulated wind processes are applied in the dynamic analysis of cooling tower shell in the time domain and the fluctuating stochastic behavior of the cooling tower shell is investigated.

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid (내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석)

  • Park, Jong-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

A SPECTRAL SUBTRACTION USING PHONEMIC AND AUDITORY PROPERTIES

  • Kang, Sun-Mee;Kim, Woo-Il;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.5-15
    • /
    • 1998
  • This paper proposes a speech state-dependent spectral subtraction method to regulate the blind spectral subtraction for improved enhancement. In the proposed method, a modified subtraction rule is applied over the speech selectively contingent to the speech state being voiced or unvoiced, in an effort to incorporate the acoustic characteristics of phonemes. In particular, the objective of the proposed method is to remedy the subtraction induced signal distortion attained by two state-dependent procedures, spectrum sharpening and minimum spectral bound. In order to remove the residual noise, the proposed method employs a procedure utilizing the masking effect. Proposed spectral subtraction including state-dependent subtraction and residual noise reduction using the masking threshold shows effectiveness in compensation of spectral distortion in the unvoiced region and residual noise reduction.

  • PDF

Spectral density functions of wind pressures on various low building roof geometries

  • Kumar, K. Suresh;Stathopoulos, T.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.203-223
    • /
    • 1998
  • This paper describes in detail the features of an extensive study on Spectral Density Functions (SDF's) of wind pressures acting on several low building roof geometries carried out in a boundary layer wind tunnel. Various spectral characteristics of wind pressures on roofs with emphasis on derivation of suitable analytical representation of spectra and determination of characteristic spectral shapes are shown. Standard spectral shapes associated with various zones of each roof and their parameters are provided. The established spectral parameters can be used to generate synthetic spectra adequate for the simulation of wind pressure fluctuations on building surfaces in a generic fashion.

Prediction of Spectral Acceleration Response Based on the Statistical Analyses of Earthquake Records in Korea (국내 지진기록의 통계적 분석에 기반한 스펙트럴 가속도 응답 예측기법)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study suggests a prediction model of ground motion spectral shape considering characteristics of earthquake records in Korea. Based on the Graizer and Kalkan's prediction procedure, a spectral shape model is defined as a continuous function of period in order to improve the complex problems of the conventional models. The approximate spectral shape function is then developed with parameters such as moment magnitude, fault distance, and average shear velocity of independent variables. This paper finally determines estimator coefficients of subfunctions which explain the corelation among the independent variables using the nonlinear optimization. As a result of generating the prediction model of ground motion spectral shape, the ground motion spectral shape well estimates the response spectrum of earthquake recordings in Korea.