• Title/Summary/Keyword: Specimen stability

Search Result 303, Processing Time 0.027 seconds

Derivation of the Mechanical Properties of Structural Steels at High Temperatures (고열 환경에서의 구조용 강재 특성 데이터베이스 구축)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.47-55
    • /
    • 2007
  • The mechanical properties such as 0.2% and 1% offset proof strength and elastic modulus are essential for a structural steel structure when the structure would be evaluated and designed to identify the performance of the structural stability exposed to fire condition. To obtain the mechanical properties for the structural steels at high temperature which are consisted of ordinary and marine ones, the tensile tests at various high temperatures had been conducted with two kinds of specimen of general structural steel SS 400 and welded steel SM 490 at the range of room temperature to $900^{\circ}C$ at interval of $100^{\circ}C$.

Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature (고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가)

  • Song, Hun;Kim, Young-Ho;Kim, Wan-Ki;So, Hyung-Suk
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites

  • Kim, Seong-Hwan;Kwon, Oh-Hyeong;Cho, Dong-Hwan
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.285-292
    • /
    • 2010
  • Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above $350^{\circ}C$. The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of $-25^{\circ}C$ to $50^{\circ}C$. The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.

The Integrity Assessment Method of Initailly Cracked Structural Components by Reliability Analysis (신뢰성해석에 의한 초기균열을 갖는 구조부재의 건전성 평가방법)

  • S.J. Yim;T.U. Byun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.161-176
    • /
    • 1993
  • For the purpose of assessing structural integrity at a level of complexity and accuracy appropriate for the situation, integrity assessment methods are formulated with the following methods. One is three-tier assessment method of the revised BSI PD 6493 which considers stable crack growth effect, the others are limit load analysis which estimates the plastic collapse load and stability assessment method which considers stable crack growth of ductile material exactly using J-integral and tearing modulus. Besides, integrity assessments for center cracked panel(CCP) specimen and the circumferential through-cracked pipe are carried out and reliability analysis is accomplished by the first order reliability method which is one of the conventional reliability methods. Also the accuracy of the present method is verified by Monte Carlo method.

  • PDF

DIMENSIONAL STABILITY OF ELASTOMERIC IMPRESSION MATERIALS USING HOLOGRAPHIC INTERFEROMETRY (Holographic Interferometry를 이용한 탄성 고무 인상재의 체적변화에 관한 연구)

  • Ha, Chee-Yang;Lee, Sung-Bok;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.574-592
    • /
    • 1996
  • This study investigated the time-dependent dimensional changes of elastomeric impression materials using holographic interferometry. Six commercial impression materials, Permlastic(polysulfide), Xantopren VL (condensation silicone), low and medium viscosity of Exafine, Provil (addition silicone), and Impregum(polyether), were selected. Steel plate was used as custom tray, and each impression specimen was 20 mm in width, 15 mm in length and 3 mm in thickness. Each impression material was evaluated at 30 minutes, 1, 2, 4, 6, 8 and 12 hours after setting using real-time holography. The results were as follow : 1. Xantopren VL and Permlastic showed relatively severe and continuous dimensional changes after setting. Low viscosity of Exafine, Provil, Impregum showed relatively slight dimensional changes with function of time and medium viscosity of Exafine showed almost no dimensional change from 2 hours after setting to 6 hours. 2. On initial dimensional changes within 1 hour, the amount of change in low viscosity of Exafine was the least and Xantopren VL was the largest. 3. On dimensional changes at 4 hours after setting, the amount of change in medium viscosity of Exafine was the least and tile change of Xantopren VL was the largest. 4. In overall dimensional stability during 12 hours, medium viscosity of Exafine was the most stable and Xantopren VL and Permlastic were least stable.

  • PDF

Evaluation of Shear Strength at Interface Between Geotextile and Cementitious Binder Materials (시멘트계 결합재가 적용된 지오텍스타일의 접촉면 전단강도 평가)

  • Son, Dong-Geon;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Multi-layered geotextile tubes may have problems on its stability when used as cofferdam. This study presents the shear strength characteristics at the interface between geotextiles and a cementitious binder material to improve the stability of the multi-layered geotextile tubes. In this study, two different types of geotextiles are used. After mixing with a rapid setting cement, fly ash, sand, accelerator, and water, the cementitious binder material is prepared at the interface between two geotextile samples and cured under water for a desired period. The specimen is placed on upper and lower direct shear boxes by using clamping systems. A series of direct shear tests for two different geotextiles are performed along the curing time under three vertical stresses. Experimental results show that the shear strength at the interface between the cementitious binder material and geotextiles is greater than that at the interface between two geotextiles. For two types of geotextiles, apparent cohesion occurs at the interface between the cementitious binder material and geotextiles. In addition, the friction angles for any curing time are improved, compared to the interface between two geotextiles. The cementitious binder material suggested for the interface between two geotextiles may be useful for the reinforcement of multi-layered geotextile tubes.

Effect of Accelerated Aging on the Color Stability of Dual-Cured Self-Adhesive Resin Cements

  • Kim, Ah-Rang;Jeon, Yong-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • Purpose: The effect of accelerated aging on color stability of various dual-cured self-adhesive resin cements were evaluated in this study. Materials and Methods: Color stability was examined using three different brands of dual-cured self-adhesive resin cements: G-CEM LinkAce (GC America), MaxCem Elite (Kerr), and PermaCem 2.0 (DMG) with the equivalent color shade. Each resin cement was filled with Teflon mold which has 6 mm diameter and 2 mm thickness. Each specimen was light cured for 20 seconds using light emitting diode (LED) light curing unit. In order to evaluate the effect of accelerated aging on color stability, color parameters (Commission Internationale de l'Eclairage, CIE $L^*$, $a^*$, $b^*$) and color differences (${\Delta}E^*$) were measured at three times: immediately, after 24 hours, and after thermocycling. The $L^*$, $a^*$, $b^*$ values were analyzed using Friedman test and ${\Delta}E^*$ values on the effect of 24 hours and accelerated aging were analyzed using t-test. These values were compared with the limit value of color difference (${\Delta}E^*=3.7$) for dental restoration. One-way ANOVA and Scheff's test (P<0.05) were performed to analyze each ${\Delta}E^*$ values between cements at each test period. Result: There was statistically significant difference in comparison of color specification ($L^*$, $a^*$, $b^*$) values after accelerated aging except $L^*$ value of G-CEM LinkAce (P<0.05). After 24 hours, color difference (${\Delta}E^*$) values were ranged from 2.47 to 3.48 and $L^*$ values decreased and $b^*$ values increased in all types of cement and MaxCem Elite had high color stability (P<0.05). After thermocycling, color change's tendency of cement was varied and color difference (${\Delta}E^*$) values were ranged from 0.82 to 2.87 and G-CEM LinkAce had high color stability (P<0.05). Conclusion: Color stability of dual-cured self-adhesive resin cements after accelerated aging was evaluated and statistically significant color changes occurred within clinically acceptable range.

COLOR STABILITY OF CEROMERS IN THREE FOOD COLORANTS (식용색소에 의한 CEROMER 수복물의 색안정성)

  • Jeong Yu-Jin;Lim Ju-Hwan;Cho In-Ho;Lim Heon-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.136-147
    • /
    • 2003
  • Statement of problem : Ceramic and composite resin have been used to fulfill the demand for esthetic prosthesis. However, ceramic is easy to break and wears off the opposite natural teeth. Conventional composite resin also has low abrasive resistance and color stability. Ceramic Optimized Polymer (ceromer) was developed in mid-1990s to overcome the shortfalls of ceramic and composite resin. Ceromer has similar abrasiveness with the natural tooth and has relatively high strength. Color stability affects esthetics and long-term prognosis of the prosthesis. Purpose The purpose of this study was to compare color stability of ceromers(2 types : $Artglass^{(R)}$. $Targis^{(R)}$) with ceramics ($Vintage^{(R)}$-polishing, $Vintage^{(R)}$-glazing). Material and Method : The color difference(${\Delta}E^*$) was measured by spectrophotometer with different immersion time. Twenty disks, 3mm in thickness and 10mm in diameter, were fabricated for each specimen in shade A2(Vita Lumin shade guide), Specimens (5 samples in each group) were immersed in the food colorants (Red no.3. Yellow no.4, Blue no.1, Distilled water) for 24 hours, 48 hours and 72 hours respectively. $L^*,\;a^*$ and $b^*$ value were measured with spectrophotometer (CM 503i : Minolta Co., Japan) and mean ${\Delta}E^*$ value was calculated for statistical analysis Results : The results of this study were obtained as follows. 1. The ${\Delta}E^*$ values of all test samples increased with the time of immersion. 2. The ${\Delta}E^*$ values of all materials increased in order of Distilled Water, Yellow no.4, Blue no.1 and fed no.3. There was significant difference between Red no.3 and the other food colorants(p<0.05). 3. The ${\Delta}E^*$ values increased in order of $Vintage^{(R)}$-glazing, $Vintage^{(R)}$-polishing. $Artglass^{(R)}$ and $Targis^{(R)}$. There was significant difference between $Vintage^{(R)}$-glazing and the other materials (p<0.05). Conclusion : By means of the above results, immersion time was found to be a critical factor for color stability of ceromer. For the long-term color stability of prosthesis it is recommended patients having ceromer prosthesis ($Artglass^{(R)},\;Targis^{(R)}$) to reduce the habitual intake of Red no.3 colorants con taming foods.

Measurement of Urine Enzymes for the Early Diagnosis of Nephrosis in Ruminants 1. Optimal Conditions for Measurement of Enzyme Activities and Normal Ranges (반추동물 신증의 조기진단을 위한 뇨효소 측정법 1. 효소활성도 측정을 위한 적합한 조건과 정상범위에 관하여)

  • Lee Chang-Woo;Lee Kyoung-Kap
    • Journal of Veterinary Clinics
    • /
    • v.6 no.2
    • /
    • pp.291-305
    • /
    • 1989
  • Present experiment was performed to establish the optimal reaction conditions for measurement of urinary gamma-glutamyltranspeptidase(${\gamma}$-GTP), N-acetyl-${\beta}$-D-glucosaminidase (AGS) and alanine aminopeptidase(AAP) activities in bovine and to investigate in vitro stability of the enzymes, within-run imprecision of the methods, and normal ranges. 1. The optimal wavelength for measurement of ${\gamma}$-GTP activity was 545nm. 2. The optimal pH of Tris-HCI buffer containing glycylglycine for measurement of urinary ${\gamma}$-GTP activity was 7.6~7.8(37$^{\circ}C$). 3. Coefficient of variance for within-run imprecision of urinary ${\gamma}$-GTP activity ranged from 4.8 to 7.2% and there was no significant difference among replications, 4. The optimal wavelength for measurement of urinary AGS activity was 405nm. 5. The optimal pH of citrate buffer for measurement urinary of AGS activity was 4.0(37$^{\circ}C$). 6. Coefficient of variance for within-run imprecision of urinary AGS activity ranged from 3.9 to 6.1% and there was no significant difference among replications. 7. The optimal wavelength for measurement of urinary AAP activity was 400nm. 8. The optimal pH of phosphate buffer for measurement of urinary AAP was 7.8. 9. Coefficient of variance for within-run imprecision of urinary AAP activity ranged from 2.5 to 4.8% and there was no significant difference among replications. 10. ${\gamma}$-GTP and AGS activities were increased significantly by gel-filtration. 11. Turbidity interfered with measurement of urinary AAP activity in bovine unless the specimen was gel-filterated. 12. Preservation of the specimen at 5$^{\circ}C$ or -20$^{\circ}C$ did not affect the AGS activity at least for 7 days after collection. 13. Preservation of the specimen at 5$^{\circ}C$ or 20$^{\circ}C$ did not affect the ${\gamma}$-GTP and AAP activities statistically, but some individual specimens revealed fluctuation during preservation. 14. ${\gamma}$-GTP, AGS and AAP activities revealed fluctuation by the tine of the day when the specimen was collected. 15. The normal ranges of urinary ${\gamma}$ -GTP, AGS and AAP activities were 6.60${\pm}$3.26(2.36-14.50), 1.31 ${\pm}$ 0.81(0.33-3.78), and 1.73 ${\pm}$ 0.55(0.77-3.03)U/l. respectively.

  • PDF

An Evaluation of Tree Roots Effect on Soil Reinforcement by Direct Shear Test (일면전단실험에 의한 수목뿌리의 토양보강효과 평가)

  • Cha, Du Song;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.281-286
    • /
    • 2005
  • Trees enhance slope stability against down slope mass movement through the removal of soil water by transpiration and by the mechanical reinforcement of their roots. To assess the magnitude of this reinforcement on natural slope stability, direct shear tests were made on dry sand reinforced with different array types of roots. Pinus koraiensis was used as root specimens. The peak shear resistance at each normal stress level was measured on the rooted and unrooted soil specimens. Increased soil resistance(${\Delta}S$) by roots was calculated using parameters like internal friction angle and cohesion of tested soil and also evaluated the effects of root array in tested soil. As results, we find that shear resistance increased in tested soil shear box as diameters and arrayed numbers of root specimen increased and cross root array in tested soil had a much greater reinforcing effect than other root arrays. Comparison of traditional root-soil model with experiments showed that simulated reinforce strength by the model was different with those obtained by the experiment due to its linearity.