• Title/Summary/Keyword: Specific surface are

Search Result 1,391, Processing Time 0.042 seconds

Adsorption of Specific Organics in Water on GAC and Regeneration of GAC by Countercurrent Oxidative Reaction

  • Ryoo, Keon-Sang;Kim, Tae-Dong;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.817-824
    • /
    • 2002
  • Granular activated carbon(GAC) is highly effective in removing organic compounds which are resistant to biological disintegration in wastewater treatment. However, GAC has reached its full adsorptive capacity, GAC needs to be regenerated before it can be used for a further adsorption cycle. Countercurrent oxidative reaction (COR) technique has been developed and evaluated for the regeneration of spent GAC. Various parameters such as flame temperature, the loss of carbon, destruction and removal efficiency (DRE) of organic compounds, surface area, surface structure, adsorptive capacity, etc. were examined to determine the performance of COR. The results of these tests showed that adosorptive capacity of regenerated GAC was completely recovered, the loss of carbon was controllable, flame temperature was high enough to insure complete destruction and removal $(\geq99.9999%)$ of specific organics of interest, polychlorinated biphenyls (PCBs), that are thermally stable, and on formation of toxic byproducts such as polychlorinated dibenzo-p-dioxins (PCDDs) or polychlorinated dibenzofurans (PCDFs) were detected during the regeneration process. The COR technique is environmentally benign, easy to use and less copital intensive than other available regeneration technologies.

Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment (침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.193-200
    • /
    • 1988
  • The starting materials were aluminum hydroxide prepared by precipitation method at the conditions of pH values; 7, 9, 10 and 11. The properties of alumina powder on heat-treatment were studied. After dehydrating structural water from amorphous aluminum hydroxide, the first formed phase was amorphous alumina and its specific surface are was decreased. The specific surface area was increased by dehydration of structural water from aluminum hydroxides except amorphous aluminum hydroxide. The specific surface area was increased with increase of the ratio of A1OOH to $A1(OH)_3$ in the region of transition aluminas. The rate of transition from aluminum hydroxide to alpha alumina occurred in the order of 7, 10, 9 and 11 of pH values. The morphology of alpha alumina powders was skeleton particles remaining outer shape of aluminum hydroxide. Both the elevation of heat-treatment temperature and the transition toalpha alumina decreased specific surface area and brought about the growth of particles.

  • PDF

Effect of Specific urface Area on the Gas Sensitive Properties (${\gamma}$-$Fe_2O_3$ 세라믹 가스감지소자;비표면이 가스감응성에 미치는 영향)

  • 신장욱;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 1986
  • This paper is concerned with a gas sensor composed of semi-conducting ${\gamma}$-$Fe_2O_3$ ceramics made by oxidizing $Fe_2O_3$ sintered body. Acicular $\alpha$-FeOOH powder prepared by precipitation of $FeSO_4$.$7H_2O$ solution was transformed to $FeSO_4$ sintered at 700$^{\circ}$-850$^{\circ}$C for 1 hr. and then oxidized to ${\gamma}$-$Fe_2O_3$ The gas sensitive properties of ${\gamma}$-$Fe_2O_3$ ceramic bodies based on the lectrical resistance change was measured in 0.5-2 vol% $H_2$ and $C_2$ $H_2$ gas at 35$0^{\circ}C$ The specific surface area of sintered specimen largely dependent on the sintering temperature and grain shape directly affected the gas sensitive pro-perties of ${\gamma}$-$Fe_2O_3$gas sensor. Specimens having larger specific surface area showed better sensitivity which means the electrical resistance change due to oxidation and reduction process occurs on ly at the surface of grains microscopically in the ${\gamma}$-$Fe_2O_3$ceramics. Micropores made in $Fe_2O_3$ powder during dehydration of $\alpha$-FeOOH can not prompt the gas sensitive properties of sintered ${\gamma}$-$Fe_2O_3$ because they are sintered or closed in the grains during sintering process and dose not affect the specific surface area of sintered body.

  • PDF

Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation (주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해)

  • Kim, Taehee;Choi, Haryeong;Kim, Younghun;Lee, Jihun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • SnO2 has the wide bandgap which allows it to be used as the photocatalyst. There are many studies to enhance the photocatalytic properties of SnO2. In this study, 3-dimensional SnO2 aerogel was synthesized using epoxide-initiated sol-gel method for the optimal specific surface area. Also, graphene oxide (GO) was added before the gelation process of the aerogel to maximize the specific surface area. Addition of 0.5 wt% of GO would possibly enhance the specific surface area by 1.7 times compared with the bare tin oxide aerogel. Furthermore, enhanced specific surface area could degrade 67.3% of initial Rhodamine B in 120 minutes. To compare with the bare SnO2 aerogel, 0.5 wt% GO addition to SnO2 could double the reaction rate of the photocatalytic degradation.

Characterization of Activation of Various Carbon Fibers via Chemical Activation with KOH (KOH에 의한 활성화된 탄소섬유들의 활성화특성)

  • Lim, Yun-Soo;Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • OXI-PAN fibers, Kynol fibers and rayon fibers were used as precursorsfor the preparation of activated carbon fibers (ACFs) by chemical activation with KOH at $800^{\circ}C$. The effects of different precursorfibers and fiber/KOH ratios on the final ACFs are discussed. The precursor fibers used are appropriate for the ACFs in a single stage pyrolysis process. The OXI-PAN fibers which were activated with KOH of 2.0M showed a specific surface area of $2328m^2/g$ however, loosed the fiber shape because of low yields. The Kynol fibers and Rayon fibers showed the high yields but the lower specific surface area of $900m^2/g$ and $774m^2/g$, respectively, at KOH of 1.5M. The OXI-PAN fibers which were activated with KOH of 1.5M have a specific surface area of $1028m^2/g$ and higher micro-pore volumes and lower yields rather than Kynol-1.5 and Rayon-1.5 samples. This phenomenon is because of higher chemical resistance of the Kynol and Rayon fibers rather than OXI-PAN fibers. However, the Kynol fibers were the best precursors on KOH activation at $800^{\circ}C$ considered carbon yields, surface areas and micropore volumes.

Realization of High Impedance Surface Characteristics Using a Periodically Transformed Artificial Magnetic Conductor Structure and Reduction Technique of Specific Absorption Rate

  • Lee, Seungwoo;Rhee, Seung-Yeop;Kim, Pan-Yeol;Kim, Nam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.113-119
    • /
    • 2013
  • We developed a transformed, symmetrical, mushroom-like surface without via holes in cells focused on a 2.4-GHz WLAN band. Each slot in the novel type structure plays a key role in modeling at the desired frequencies. The designed artificial magnetic conductor (AMC) has several advantages, including a small size, a wider bandwidth, a short reflecting distance to the antenna, and easy fabrication because there are no via holes. Overall dimensions of the AMC cell are 21 mm $(Width){\times}21mm$ $(Height){\times}2.6mm$ (Thickness), and the bandwidth is about three times wider (11.7%) compared to that of a conventional AMC (4.0%). For evaluating the performance of the proposed structure, a reflector, which periodically consists of the designed AMC cells, was developed. The antenna with the investigated AMC reflector not only works within a quarter of the wavelength because of the extremely high wave impedance generated by the AMC cells on the surface of the structure but also reduces the specific absorption rate (SAR). Electromagnetic field (EMF) exposure to a human phantom was analyzed by applying the designed reflector to the 2.4-GHz dipole antenna in a tablet PC. The calculated peak SAR averaged over 1 g was 0.125 W/kg when the input power was 1 W and the antenna was located at 20 cm from the human phantom. However, the SAR value was only 0.002 W/kg (i.e., 98.4% blocked) when the designed reflector was inserted in front of the antenna.

Plasma Aided Process As Alternative to Hard Chromium Electroplating

  • Kwon, Sik-Chol;Lee, K.H.;Kim, J.K.;Kim, M.;Lee, G.H.;Nam, K.S.;Kim, D.;Chang, D.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.48-58
    • /
    • 2003
  • This paper will present an overview of toxicity of hexavalent chromium as well as effort for its replacement by a wide spectrum of alternative materials and technologies. Cr-based materials such as trivalent electrodeposit will be one of strong candidates for hard chromium by surface modification of its surface hardness. Ni-base alloy deposits has proved its application in specific mold for glass. HVOF has been studied in aircraft and military sector. There are still under way of development for commercially available alternatives. To date, no single coating has been identified as universal process as comparable to conventional hard chromium electroplating.

Inflence of carbonization temperature on electrochemical performance of multi-walled carbon nanotube/poly(vinylidene fluoride) composite-derived carbons (탄소나노튜브/폴리비닐리덴 플루오라이드 복합체로부터 제조된 탄소의 탄화온도에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.2-214.2
    • /
    • 2011
  • In this work, porous carbon based electrodes are prepared by carbonization using poly(vinylidene fluoride) (PVDF)/carbon nanotube (CNT) composites to further increase the specific capacitance for supercapacitors. Electrode materials investigate the aspects of specific capacitance, pore size distribution and surface area: influence of carbonization temperatures of PVDF/CNT composites. The electrochemical properties are investigated by cyclic voltammetry, impedance spectra, and galvanostatic charge-discharge performance with in $TEABF_4$ (tetraethylammonium tetrafluoroborate)/acetonitrile as non-aqueous electrolyte. From the results, the highest value of specific capacitance of ~101 $F{\cdot}g^{-1}$ is obtained for the samples carbonized at $600^{\circ}C$. Furthermore, pore size of samples control be low 7 nm through carbonization process. It is suggested that micropores significantly contribute to the specific capacitance, resulting from improved charge transfer.

  • PDF

A Study on the Adsorption Characteristic of Low Concentration Phenol by Activated Carbon (저농도(低濃度) 페놀의 활성탄(活性炭)에 대한 흡착특성(吸着特性)에 관(關)한 연구(硏究))

  • Kwon, Dae-Young;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 1994
  • It is well known that the adsorption character of activated carbon is dependent on the specific surface area and pore volume, but the relationship between the surface-chemical structure and the adsorption character has not been studied very often. The purpose of this study is to investigate the effect of the acidic surface functional groups of activated carbon and the adsorption characteristics of low concentration phenol. So three types of activated carbons and four different treatments were introduced to this isotherm experiment. These treatments were nontreatment, 1N $HNO_3$ treatment, 6N $HNO_3$ treatment, $H_2O_2$ treatment. The conclusions of this study are as followings. If the initial concentration of phenol is high as 5mg/l, the adsorption is dependent on the specific surface area. If the initial concentration of phenol is low as $100{\mu}g/l$, the adsorption is dependent on the average pore volume. The acidic surface functional groups prevent the adsorption of phenol molecules to activated carbon. And the adsorbed amount decreases more for $HNO_3$ treatment than for $H_2O_2$ treatment and more for concentrated $HNO_3$ treatment than for dilute $HNO_3$ treatment.

  • PDF

A Study on the Development of Activated Carbon from Rice-Hull (왕겨를 이용한 활성탄 개발에 관한 연구 (I))

  • 이희자;조양석;조광명
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.81-88
    • /
    • 2000
  • Every year, 1.1 million tons of rice-hull are produced in South Korea by the by-product in pounding rice. But they has mainly been utilized as a fuel, agricultural compost and moisture proofs. So, it's very valuable to use waste rice-hull for activated carbon manufacture. SiO2 content was the highest among inorganics in rice-hull. Therefore, the SiO2 extraction experiments were carried out under the various conditions of pH 9 to 14, reaction time from 2 to 24 hrs and various temperature of 20 to 100℃. The results showed that increase in pH and temperature enhanced SiO2 extraction from the carbonized rice-hull. The surface area of the carbonized rice-hull indicating activated carbon adsorption capacity was very small as 178∼191 m2/g at first. However, it was increased to 610∼675 m2/g when extracted in alkali solution at 100℃. When the mixing rate of carbonized rice-hull and NaOH was 1:1.5, iodine No. and surface area of activated rice-hull during 10 min at 700℃ were 1,650 mg/g and 1837 m2/g, respectively. Subsequently, an activated carbon with specific surface area of 1,300∼1,900m2/g was manufactured in a short contact time of 10∼30 min with a mixing rate of 1:1.5 in carbonized rice-hull and NaOH, and iodine No. and specific surface area increased as the amount of SiO2 removal increased.

  • PDF