• Title/Summary/Keyword: Specific heat at High Temperature

Search Result 158, Processing Time 0.03 seconds

Characteristics of Electomigration & Surface Hardness about Tungsten-Carbon-Nitrogen(W-C-N) Related Diffusion Barrier (W-C-N 확산방지막의 전자거동(ElectroMigration) 특성과 표면 강도(Surface Hardness) 특성 연구)

  • Kim, Soo-In;Hwang, Young-Joo;Ham, Dong-Shik;Nho, Jae-Kue;Lee, Jae-Yun;Park, Jun;Ahn, Chan-Goen;Kim, Chang-Seong;Oh, Chan-Woo;Yoo, Kyeng-Hwan;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • Copper is known as a replacement for aluminum wire which is used for semiconductor. Because specific resistance of Cu ($1.67{\mu}{\Omega}$-cm) is lower than that of Al ($2.66{\mu}{\Omega}$-cm), Cu reduce RC delay time. Although melting point of Cu($1085^{\circ}C$) is higher than melting point of Al, Cu have characteristic to easily react with Silicon(Si) in low temperature, and it isn't good at adhesive strength with Si. For above these reason, research of diffusion barrier to prevent reaction between Cu and Si and to raise adhesive strength is steadily advanced. Our study group have researched on W-C-N (tungsten-carbon-nitrogen) Diffusion barrier for preventing diffusion of Cu through semiconductor. By recent studies, It's reported that W-C-N diffusion barrier can even precent Cu and Si diffusing effectively at high temperature. In this treatise, we vaporized different proportion of N into diffusion barrier to research Cu's Electromigration based on the results and studied surface hardness in the heat process using nano scale indentation system. We gain that diffusion barrier containing nitrogen is more stable for Cu's electromigration and has stronger surface hardness in heat treatment process.

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

Solvent-free, Soap-free Synthesis Process of Methyl Fructoside Oleic Acid Polyester (무용매 , 무유화제 공정에 의한 메틸프룩토시드 올레산 폴리에스테르의 합성)

  • Heo, Joo-Hyung;Kim, Chong-Tai;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.45-56
    • /
    • 1998
  • Methyl fructoside oleic acid polyester(MFPE), fructose-based sugar polyester, was synthesized by solvent-free, soap-free transesterification of methyl oleate with methyl fructoside(MF) as a sugar starting material in the presence of conventional potassium carbonate basic catalyst. Methyl fructoside was found to be an effective sugar starting material, because of its low softning point, high heat stability, high miscibility, and high reactivity than other sugars. Yield 98% of purified MFPE based on initial weight of MF was obtained at 1:5 of the molar ratio of methyl fructoside to methyl oleate, 2%(w/w) of potassium carbonate catalyst content, 20${\sim}$200mmHg of reduced pressure and $180^{\circ}C$ of reaction temperature. MFPE structure was confirmed by infrared and proton nuclear magnetic resonance spectroscopy. Physical properties of methyl of fructoside oleic acid polyester such as viscosity, HLB, solubility, color, refractive index, specific gravity, and density were similar to physical properties of sucrose polyesters(SPE) and vegetable oils. Then, it was elucidated that MFPE was sufficient to replace the SPE and conventional oils.

Proteomic Changes in Odae Polished White Rice Grown at Different Cultivation Conditions (재배환경에 따라 변화하는 오대벼 백미의 단백질체 분석)

  • Lee, Ju-Young;Lee, Jin-Woo;Kim, Young-Ran;Yeom, Yu-Jin;Lim, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • It has been known that the proteome profiles in the period of growth and development of rice are changed by the growth conditions including temperature, soil, and fertilization. In this study, the proteome profiles of Odae polished white rice grown in Chulwon and Chilgog were compared on 2-dimensional(D) gels. The differentially expressed proteins were selected from the 112 identified total proteins and classified into functional groups. The most significantly differentially expressed proteins were stress responsive proteins; Ent-kaur-16-ene synthase, which is responsible for synthesizing a plant hormone gibberellin, was expressed in Chulwon rice and heat shock proteins were in Chilgog rice, respectively. Xylanase inhibitor protein, which inhibits the enzyme xylanase produced by pathogenic fungi and Bacilli, was expressed significantly high in Chilgog rice grown at high temperature. Differential expressions of transporter proteins were observed both in Chulwon and Chilgog rice. Regarding the facts that Chilgog rice contained relatively higher amount of proteins than Chulwon rice and Chulwon rice showed large number of proteins were differentially expressed, it can be concluded that different cultivation conditions could change the protein expression profiles in rice in various ways, including elevation of protein amount or differential expressions of specific proteins, etc. The results suggest that the characteristics of the profiles of the proteome in the polished white rice are definitely changed by the environmental factors including high temperature. The results can be utilized for the development of the proper cultivation conditions for the production of high quality rice with good palatability.

Development of Thermal Performance Tester for Non-Homogeneous Insulation Pannels Installed Vertically (수직으로 설치된 비균질 평판 단열재용 성능시험장치 개발)

  • Oh, Hong Young;Song, Ki O;Jeon, Hyun Ik;Cho, Sun Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2016
  • In case of metal insulation, which is produced by stacking stainless steel sheets and air layers in a multi-stack manner at a specific thickness, insulation performance will be evaluated based on thermal transmittance rather than the intrinsic physical properties of each material such as thermal conductivity. However, there is no standard for measuring thermal transmittance targeted for non-homogeneous insulation which is used in relatively high temperature conditions such as a power station. In this study, the thermal conductivity of homogeneous insulation acquired by the standardized guard hot plate method and the thermal conductivity of homogeneous insulation measured by the newly developed performance tester were compared to verify the confidence level of the tester. As a result, thermal conductivity acquired by the newly developed thermal transmittance tester was about 6% higher than the thermal conductivity measured by the existing guard hot plate method under the anticipated service temperature conditions.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

Tailoring of the Chemical Resistance of Chrome Yellow Particles by Silica Coating (안료의 내약품성 향상을 위한 황연입자의 실리카 피복에 관한 연구)

  • Lee, Seewoo;Kim, Seongsoo;Kim, Dong-Uk;Wang, Lin;Choi, Heekyu
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.310-315
    • /
    • 2008
  • Herein, we synthesized silica-coated chrome yellow particles having improved chemical resistance. The intermediate with a good dispersion stability was prepared and the chemical resistance of the final product was investigated. The effects of pH and temperature, as the main parameters influencing the formation of particles, the reduced particle size by homogenizer on the silica coating were investigated. The change in the particle morphology by temperature and pH was also studied. As the results, small and monodisperse particles were achieved at low pH and high temperature. Good silica coating was obtained when used reduced size of the particles by homogenizer. Furthermore, the sufficient silica coating by microencapsulation was obtained at 9~10 pH and the temperature above $90^{\circ}C$.

Presence of Rhodanese in the Cytosolic Fraction of the Fruit Bat (Eidolon helvum) Liver

  • Agboola, Femi Kayode;Okonji, Raphael Emuebie
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Rhodanese was isolated and purified from the cytosolic fraction of liver tissue homogenate of the fruit bat, Eidolon helvum, by using ammonium sulphate precipitation and CM-Sephadex C-50 ion exchange chromatography. The specific activity was increased 130-fold with a 53% recovery. The $K_m$ values for KCN and $Na_2S_2O_3$ as substrates were $13.5{\pm}2.2\;mM$ and $19.5{\pm}0.7\;mM$, respectively. The apparent molecular weight was estimated by gel filtration on a Sephadex G-100 column to be 36,000 Da. The optimal activity was found at a high pH (pH 9.0) and the temperature optimum was $35^{\circ}C$. An Arrhenius plot of the heat stability data consisted of two linear segments with a break occurring at $35^{\circ}C$. The apparent activation energy values from these slopes were 11.5 kcal/mol and 76.6 kcal/mol. Inhibition studies on the enzyme with a number of cations showed that $Mg^{2+}$, $Mn^{2+}$, $Ca^{2+}$, and $Co^{2+}$ did not affect the activity of the enzyme, but $Hg^{2+}$ and $Ba^{2+}$ inhibited the enzyme.

Combustion Characteristics of the Quercus variabilis and Zelkova Serrata Dried at Room Temperature (자연 건조된 굴참나무와 느티나무의 연소특성)

  • Chung, Yeong-Jin;Kwon, In-Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.96-101
    • /
    • 2010
  • One of the restriction of wood as building material is its combustibility. The purpose of this paper is to examine the combustion properties of the quercus variabilis and zelkova serrata which are dried at room temperature and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO production and smoke obscuration. The $HRR_{mean}$ 77.94 kW/$m^2$ of the quercus variabilis at 50 kW/$m^2$ was high in comparison with $HRR_{mean}$ 13.06 kW/$m^2$ for the zelkova serrata. Furthermore, the quercus variabilis has high specific extinction area ($SEA_{mean}$), 41.11 $m^2$/kg compared with $SEA_{mean}$ 9.23 $m^2$/kg of zelkova serrata. Thease results are depend on the density of tested wood species. In addition, the quercus variabilis has high CO production rate compared with that of zelkova serrata. Also, zelkova serrata showed an increase of retardant properties attributed to char formation compared with that of quercus variabilis.

A Study on the Reduction of Temperature Damage in Concrete Pavement (콘크리트 포장에서 발생하는 온도피해 저감에 관한 연구)

  • Jae-Don Kim;Il-Young Jang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.305-312
    • /
    • 2023
  • Purpose: Although the damage caused by abnormal temperatures is extensive, blow-up or black ice is typical in concrete structures. In this study, PCM with high phase change energy was mixed with concrete to reduce temperature damage to concrete pavement. Method: In order to reduce temperature damage to low temperatures and high temperatures, capsule-type PCM with phase change temperatures of 4.5℃ and 44℃ was replaced by 10%, 30%, and 50%, and thermal performance experiments and compressive strength experiments were conducted using thermocouples and variable chambers. Result: As a result of the thermal performance experiment, it was found that the incorporation of PCM improves temperature resistance by up to 25% or more, and increases thermal resistance at all temperatures with high specific heat when substituted in large amounts. As a result of the compression strength experiment, a substitution of 30% or more resulted in a decrease in the compression strength, and a large strength difference was shown based on the phase change temperature of the PCM. Conclusion: The incorporation of PCMs has been shown to increase the thermal performance of concrete, with the greatest increase in thermal performance near the phase change temperature of PCM. In addition, a small strength reduction of 10% to 20% occurs at the highest substitution rate of 50% substitution, so there is no significant problem with usability, and additional PCM substitution is expected to improve thermal performance.