• Title/Summary/Keyword: Specific damping capacity(SDC)

Search Result 9, Processing Time 0.026 seconds

Effects of Graphites and Carbides on the Specific Damping Capacity of Low Thermal Expansion Cast Irons (저 열팽창 주철의 진동감쇠능에 미치는 흑연 및 탄화물의 영향)

  • Moon, Byung-Moon;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 1997
  • Effects of the amount of flake type graphite, morphology and (V,Mo)carbides on the specific damping capacity of austenitic low thermal expansion cast irons were investigated. Specific damping capacity(SDC) of low thermal expansion cast irons increased with the increased amount of graphite. Specific damping capacity of low thermal expansion cast iron decreased with the increased Young's modulus. In the case of V and Mo addition, SDC decreased with the increased amount of carbides. Specific damping capacity increased about 2% by the movement of magenetic domains which appeared in ferromagnetic materials.

  • PDF

Damping Property Measurement of Damping Alloy by Dynamic Strain Gage (Dynamic Strain Gage를 이용한 제진합금의 제진특성 측정)

  • Lee, Gyu-Hwan;Jo, Gwon-Gu;Lee, Bong-Jik;Sim, Myeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.502-509
    • /
    • 1994
  • New damping measurement equipment was designed using the dynamic strain gage and high speed analog to digital signal 12 bit converter and compared it with existing equipment. The damping properties of general material and high damping material were also studied by this machine. The SDC (specific damping capacity) was measured with various heat treatment condition, initial vibration amplitude and internal stress. The vibration amplitude of high damping material is decreased within nearly less than 0.4 second after applying the initial forced vibration. But that of general material is still vibrating at the same time. After furnace-cooling heat treatment, SDCmax of Fe-lGwt.%Cr system was more than 40% and that of Fe-5.5wt.%Al alloy was more than 30% after air-cooling heat treatment. Upon increasing of initial vibration amplitude, it is detected the migration of SDCmax into the region of small vibraton amplitude. Damping capacity is decreased rapidly as the internal stress Increases. Damping measurement equipment in the present study was ahln to give the more accurate results of damping properties in the small vibration amplitude region.

  • PDF

Effects of Cr and Ni on Damping Capacity and Corrosion Resistance of Fe-17%Mn Alloy (Fe-17%Mn 합금의 진동감쇠능 및 내식성에 미치는 Cr, Ni 첨가의 영향)

  • Kim, Jung-Chul;Han, Dong-Woon;Back, Jin-Hyun;Kim, Tai-Hoon;Baik, Seung-Han;Lee, Young-Kook
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • Effects of Cr and Ni addition on damping capacity, mechanical property, and corrosion resistance of Fe-17%Mn martensitic alloy have been studied. Martensite start temperature($M_{S}$) of the alloy decreases linearly with increasing Cr and Ni contents up to 15%. The damping capacity decreases gradually from 27 to 22% in specific damping capacity(SDC) with increasing Cr and Ni contents from zero to 10%, and decreases rapidly with further Cr and Ni content in Fe-17%Mn alloy. The tensile strength of the alloy maintains a level of 60 $kgf/mm^{2}$ regardless of Cr content with an elongation of 20 to 25%. But, in case of Fe-17%Mn-x%Ni alloy, the tensile strength decreased rapidly with the Ni content of above 10% because of austenite morphology. Immersion test in 5% NaCl solution leads to the result that the corrosion resistance of the alloy becomes excellent above 10% Cr. From the above results, it is concluded that the optimum Cr content to improve the mechanical property and corrosion resistance of the alloy in 5%NaCl solution with a lesser decrease in damping capacity is about 10%. In the case of 5% $H_{2}SO_{4}$ condition, the Fe-17%Mn-10%Ni is an optimum alloy.

Effects of Pouring Temperature and Alloying Elements on Damping Capacity and Mechanical Properties in 3.6%C Grey Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 주입온도 및 합금원소 첨가의 영향)

  • Kim, J.C.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.231-238
    • /
    • 2000
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of pouring temperature on the damping capacities and mechanical properties were investigated in 3.6%C cast iron. At $1400^{\circ}C$, specific damping capacity showed the maximum value, and decreased with increase pouring temperature. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ni on the damping capacities and mechanical properties have been investigated in 3.6%C gray cast iron. At 0.2%Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content. Graphite length also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite length. In case of Mo addition in 3.6%C-0.2%Ni cast iron, specific damping capacity and tensile strength was 27% and $20kgf/mm^2$ at 3.6%C-0.2%Ni-0.3%Mo cast iron respectively.

  • PDF

Effects of Alloying Elements(Sb, Ti) on Damping Capacity and Mechanical Properties In 3.6%C Gray Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 Sb 및 Ti 첨가의 영향)

  • Kim, J.C.;Han, D.W.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.330-335
    • /
    • 2001
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which Is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Sb on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni gray cast iron. At 0.02%Sb, specific damping capacity showed the maximum value, and decreased with further increase in Sb content. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ti on the damping capacities and mechanical properties have been investigated in 3.6%C-0.2%Ni-0.02%Sb gray cast iron. Specific damping capacity increased with increase in Ti content. Graphite length also showed same behavior. Tensile strength increased with Ti content due to refinement of pearlite. In the case of 0.14%Ti addition in 3.6%C-0.2%Ni-0.02%Sb cast iron, specific damping capacity and tensile strength was 36% and 25 $kgf/mm^2$ which are higher than 32% and 15 $kgf/mm^2$ at 3.6%C-0.2%Ni cast iron respectively.

  • PDF

Application of Fe-Mn High Damping Alloys for Reduction of Noise and Vibration in Power Plants (Fe-Mn 방진합금을 적용한 발전소 격납용기 살수펌프의 소음$\cdot$진동 저감효과에 관한 연구)

  • 백승한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.720-729
    • /
    • 1999
  • Coventional methods for reducing vibration in engineering designs (i.e. by stifferning or detuning) may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. Although several non ferrous damping alloys have been developed, none of those materials are applied in any industrial factor due largely to high production cost. To meet these requirement, we have developed a new Fe-Mn high damping alloy. In previous studies, we have reported that an Fe-17%Mn alloy exhibits the highest damping capacity(Specific Damping Capacity:SDC, 30%) among Fe-Mn binary system, and proposed that the boundaries of various types such as $\varepsilon$-martensite variant boundaries, stacking faults in $\varepsilon$-martensite, stacking faults in austenitic and ${\gamma}$$\gamma /\varepsilon$ interfaces give rise to a high damping capacity. The Fe-17%Mn alloy also has advantages of good mechanical properties(T.S. 70 kg/nm$^2$ and low cost over other damping alloys(1/4 times the cost of non-ferrous damping alloy). Thus, the Fe-17%Mn high damping alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components. In this paper, the overall properties of the Fe-17%Mn high damping alloy is introduced, and its applicability to containment spray pump in the power plant is discussed.

  • PDF

Development of High Damping Alloys for Reduction of Noise and Vibration (소음.진동 제어를 위한 방진합금 개발)

  • Baik, Seung-Han;Kim, Jung-Chul;Han, Dong-Woon;Baik, Jin-Hyun;Kim, Tai-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.565-569
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloys. Also, the alloy has advantages of good mechanical properties and more economical than any other known damping alloys(1/4 times as cost of non-ferrous damping alloy). Thus, the high damping Fe-17%6Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity(SDC, 30%) and mechanical property(T.S 700MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit several such applications.

  • PDF

Effects of Heat Treatment on Damping Characteristics of Fe-Al Alloys (Fe-Al 합금의 제진특성에 미치는 열처리의 영향)

  • Lee, J.H.;Kim, K.J.;Kim, D.K.;Lee, K.H.;Shin, M.C.
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.302-309
    • /
    • 1996
  • Fe-5.7%AI-1.1%Cr-0.5%Si damping alloys containing 0%C and 0.12%C were heat-treated at $800^{\circ}C$ for an hour and then cooled by using some different methods. The damping behaviors of these alloys were observed by optical microscopy, X-ray diffraction and a specific damping capacity(SDC) test. Effect of cooling method on microstructures and the internal stresses of these alloys were negligible while the damping capacity of these alloys was considerably deteriorated by water quenching. The (200) texture was mainly developed by water quenching while the (110) texture by furnace cooling. These results were interpreted by the magnetization behaviors of the ferromagnetic $\alpha$ ferrite. The easy axis of magnetization in <100> direction means that <100> axis has more $180^{\circ}$ magnetic domain walls than $90^{\circ}$ ones. Thus. $180^{\circ}$ magnetic domain walls were more formed by water quenching, which deteriorated the damping capacity of these alloys. Consequently, the amount of magnetic domain walls giving good damping capacity became less so that the damping capacity was poor in water quenching.

  • PDF

Effects of Alloying Elements(C, Si) and Hot-Rolling on Damping Capacity and Mechanical Properties of Fe-17%Mn Alloys (Fe-17%Mn 합금의 진동감쇠능과 기계적 성질에 미치는 합금원소(C, Si) 및 열간압연의 영향)

  • Kim, J.C.;Han, D.W.;Back, J.H.;Kim, T.H.;Baik, S.H.;Lee, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 2005
  • In this study, the effects of C and Si on damping capacity and mechanical properties of as-cast and as-rolled Fe-17%Mn alloys were investigated as a basic study for the purpose of the commercialization of the alloy. The $M_s$ temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation in Fe-17%Mn alloy was decreased with increasing C and Si contents, resulting in the less volume fraction of ${\varepsilon}$ martensite. The damping capacity was also decreased with increasing alloying content because of less ${\varepsilon}$ amount and the reduction in mobility of the damping sources such as the stacking fault boundaries and ${\gamma}/{\varepsilon}$ interfaces due to the pinning effect by alloying elements. The mechanical properties of as-rolled alloys were superior to those of as-cast alloys probably because of finer ${\gamma}$ grains, larger amount of ${\varepsilon}$ martensite, and chemical homogeneity.