• Title/Summary/Keyword: Specific cutting pressure

Search Result 16, Processing Time 0.023 seconds

Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling (정면밀링에서 공구경사각에 따른 비절삭저항 변화)

  • 류시형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Prediction of Specific Cutting Pressure in Face Milling Considering Tool Rake Angles (정면밀리에서 공구경사각을 고려한 비절삭저항 예측)

  • Ryu, S.H.;Chu, C.N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.169-177
    • /
    • 1997
  • In this study, investigated are the effects of tool rake angles and the change of cutting conditions on the specific cutting pressure in face milling. The cutting force in face milling is predicted from the double cutting edge model in3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the presented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential force, radial force and geometric conditions. Also, the rela- tionship between specific cutting pressure and cutting conditions including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Development of mean specific cutting pressure model for cutting force analysis in the face milling process (정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발)

  • Lee, B.C.;Hwang, J.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-25
    • /
    • 1994
  • In order to design and improve a new machine tool, there is a need for a better understanding of the cutting force. In this paper, the computer programs were developed to predict not only the mean specific cutting pressure but also the cutting force. The simulated cutting forces in X, Y, Z directions resulted form the developed cutting force model were compared with the measured cutting forces in the time and frequency domains. The simulated cutting forces resulted from the new cutting force model have a good agreement with the measured force in comparison with these resulted from the existing cutting force model.

  • PDF

Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling (정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측)

  • Kim, Kug-Weon;Joo, Jung-Hoon;Lee, Woo-Young;Choi, Sung-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.

Drilling force model considering tool wear (마모를 고려한 드릴 절삭력 모델)

  • 최영준;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1042-1047
    • /
    • 2001
  • A mechanistic model is developed to predict the thrust force and cutting torque of drilling process including wear. A mechanistic oblique cutting force model is used to develop the drilling force model. The cutting lips are divided into small elements and elemental forces are calculated by multiplying the specific cutting pressure with the elemental chip area. The specific cutting pressure is a function of chip thickness, cutting velocity, rake angle and wear. The total forces are then computed by summing the elemental forces. Measured cutting forces are in good agreement with the simulated cutting forces.

  • PDF

정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발

  • 이병철;황정철;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.28-33
    • /
    • 1992
  • The paper describes a new mean specific cutting pressure model in order to improve the accuracy of prediction of cutting force for face milling. The new mean specific cutting pressure model produces a mean specific cutting pressure and coefficients applied to existing cutting model not by traditional method but by considering intermittence and variation of chip width according to insert cutting position to take into cutter geometry machining condition and width of workpiece, and considering a mean measure force according to spindle eccentricity and mean measure force according to spindle eccentricity and insert initial position errors.. The simulated forces in X, Y, Z directions resulted from the simulated cutting model and the new cutting model are compared with measured forces in the time end frequency domains. The simulated forces in the time and frequency domains. The simulated forces resulted from the new cutting model have a good degreement with measured forces in comparison with these resulted from the existing cutting model

Development of Dynamic Cutting Force Model by Mean Specific Cutting Pressure in Face Milling Process (평균 비절삭저항을 이용한 정면 밀리의 동절삭력 모델 개발)

  • Lee, Byung-Cheol;Baek, Dae-Kyun;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.39-52
    • /
    • 1995
  • In order to design and improve a new machine tool, there is a need for a better understanding of the dynamic cutting force. In this paper, the computer programs were developed to predict the dynamic cutting force by the mean specific cutting pressure in the face milling process. The simulated cutiing forces in X, Y, Z directions resulted from the developed dynamic cutting force model are compared with the measured cutiing forces in the time and frequency domains. The simulated cutting force model have a good agreement with the measured forces in comparison with those resulted from the existing cutting force model.

  • PDF

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

Design of Tool for Food Cutting with Ultrasonic Waves (초음파 식품 컷팅용 공구의 설계)

  • Park, Woo-Yeol;Jang, Ho-Su;Kim, Jung-Ho;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.80-85
    • /
    • 2012
  • The ultrasonic cutting method is which cutting by applying high frequency vibrational energy into specific area at constant pressure. Ultrasonic cutting is consisted of power supply, transducer, booster and cutting tool. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper focused to cutting tool design, its length L was set by calculating vibration equation. And the value of the shape parameter a was diversified as the integral multiple and the result of 40,189Hz the analysis of Modal was shown in the length 30mm of the result of performance b in the 11th mode Also by performing harmonic response analysis, the frequency response result was 40,189Hz, which was similar to modal analysis result.

Modeling of the Specific Cutting Pressure to Predict the Cutting Force in Face Milling (정면 밀링 가공에서의 절삭력 예측을 위한 비절삭 저항 모델링)

  • Joo, Jung-Hoon;Kim, Kug-Weon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.306-308
    • /
    • 2008
  • 본 논문은 정면 밀링 가공에서의 절삭력 예측을 위한 수학적 모델을 설정하고 컴퓨터 시뮬레이션을 수행하였다. 실험으로 얻은 절삭력 데이터를 이용하여 비절삭 저항을 모델링하였고 컴퓨터 시뮬레이션을 통해 절삭력을 예측하였다. 예측된 절삭력은 실제 실험을 통해 얻은 절삭력과 비교하여 본 모델의 타당성을 검증하였다.

  • PDF