• Title/Summary/Keyword: Specific UV absorbance

Search Result 35, Processing Time 0.019 seconds

Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria (토양 서식 미생물을 이용한 가축사체 매몰지 토양유래 용존 유기물 분해)

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.861-866
    • /
    • 2013
  • The aim of this study was to investigate the biodegradation of dissolved organic matter derived from animal carcass disposal soil using soil inhabited bacteria and to identify the bacteria involved in the biodegradation. The two soils were obtained from the animal carcass burial sites located in Anseong, Gyeonggi-do, Korea. The results indicated that during the biodegradation experiments (56 days), 48% of dissolved organic carbon (DOC) was mineralized within 13 days in soil-derived solution 1 (initial DOC = 19.88 mgC/L), and the DOC concentration at 56 days was $8.8{\pm}0.4$ mg C/L, indicating 56% mineralization of DOC. In soil-derived solution 2 (initial DOC = 19.80 mgC/L), DOC was mineralized drastically within 13 days, and the DOC concentration was decreased to $6.0{\pm}0.4$ mg C/L at 56 days (76% mineralization of DOC). Unlike DOC value, the specific UV absorbance ($SUVA_{254}$) value, an indicator of proportion of aromatic structures in total organic carbon, tended to increase until 21 days and then decreased thereafter. The $SUVA_{254}$ values in soil-derived solutions 1 and 2 were the highest at 21 days. The microbial analysis demonstrated that Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. were detected at 14 days of incubation, whereas Pseudomonas veronii appeared as a dominant species at 56 days.

Comparison of Spectroscopic Characteristics and Chemical Oxygen Demand Efficiencies for Dissolved Organic Matters from Diverse Sources (기원별 용존 유기물의 분광특성 및 COD 산화율 비교)

  • Jung, Ka-Young;Park, Min-Hye;Hur, Jin;Lee, Seungyoon;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.589-596
    • /
    • 2009
  • The spectroscopic characteristics and chemical oxygen demand (COD) oxidation efficiencies were investigated for dissolved organic matters (DOM) from diverse sources, which may indirectly affect the concentrations and the quality of DOM found in watersheds. The DOM investigated for this study showed a wide range of the percent distributions of refractory organic matter (R-OM) from 8 to 100%. Relatively high R-OM distributions were observed for the DOM with the source of head water, sediments, paddy soils, field soils, and treated sewage whereas the DOM from livestock waste, reed, weeds, algae, and attached algae exhibited lower R-OM percent distributions. The percent distribution of R-OM had positive correlations with specific UV absorbance (SUVA) and humidification indices (HIX) of DOM. The investigated DOM was classified into four different source groups (i.e., biota, vegetables, soils, sediments) by comparing the synchronous fluorescence spectra. The DOM group from biota source was characterized by a prominent presence of protein-like fluorescence (PLF) whereas fulvic-like fluorescence (FLF) was additionally observed for vegetable-source DOM. FLF became significant for the DOM from both soils and sediments although no PLF was found for soil-derived DOM. A range of COD oxidation efficiency was observed for the various DOM, ranging from 36 to 94% and from 65 to 125% for $COD_{Mn}$ and $COD_{Cr}$, respectively. The results indicate that $COD_{Cr}$ reflects the higher OM concentration than $COD_{Mn}$. However, 95% confidence intervals of the COD oxidation efficiencies were similar for the two types of COD, suggesting that $COD_{Cr}$ may not be the superior OM index to $COD_{Mn}$ in terms of the variability of the oxidation efficiency. No significant correlations were obtained between COD oxidation efficiencies and the spectroscopic characteristics of DOM for this study.

The Formation Characteristics of THMs and HAAs in Chlorination of Raw Water of Different Organic Matter Characteristics (상수원수의 유기물 특성에 따른 염소처리시 THMs 및 HAAs의 생성특성)

  • Oh, Sun-Mi;Kim, Seung-Hyun;Lee, Min-Gyu;Xu, Mei-Lan;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.785-797
    • /
    • 2006
  • The formation characteristics of trihalomethanes (THMs) and haloacetic acids (HAAs) were investigated in chlorination of raw water of different organic mallet characteristics. The samples used in this study were hydrophobic (N-HPO) and hydrophilic fraction (N-HPI) (which were concentrated and separated from Nakdong river water), and humic acid (HA) (which is known as a strong hydrophobic acid) as a reference organic matter, the specific UV absorbance (SUVA) of which was 2.19, 1.15 and 7.92, respectively. With increasing chlorine contact time, THMFP and HAAFP (the formation potential of THMs and HAAs) increased, but their increase was different depending on the organic mallet characteristics (i.e., for N-HPI, THMFP was higher than HAAFP, but the inverse result was obtained for N-HPO and HA and the ratio between them was greater for HA), and the mainly formed chemical species were CHCI$_3$ in case of THMs and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in case of HAAs for N-HPO and HA (and the ratios of CHCI$_3$ to total THMs and DCAA and TCAA to total HAAs for HA were higher than those for N-HPO), but for N-HPI, the ratio of brominated THMs was a little higher than that of CHCI$_3$ and the ratio of DCAA and TCAA to total HAAs was lower than that of N-HPO, although they are main chemical species in case of HAAs. Comparing THMFP and HAAFP with the increase in bromide concentration added with those in not adding it, the former increased greatly and its increase was higher for the organic mallet with stronger hydrophobicity, but the latter was lower for N-HPO and N-HPI and was similar for HA. The main chemical species with increasing bromide concentration were CHBt$_3$ in case of THMs regardless of organic matter characteristics, and dibromoacetic acid (DBAA) for N-HPO and N-HPI, DBAA and tribromoacetic acid (TBAA) for HA in case of HAAs. With increasing reaction temperature and pH, THMFP and HAAFP increased for the former, but for the latter, THMFP increased and HAAFP decreased, although the rate of increase or decrease was different with organic mallet characteristics.

Changes in the Characteristics of Dissolved Organic Matter by Microbial Transformation and the Subsequent Effects on Copper Binding (생분해에 따른 용존 유기물질 성상 및 중금속 구리와의 결합특성 변화)

  • Jung, Ka-Young;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Microbial changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the conditional stability constants of copper were investigated using 14 day-incubations of Pony Lake fulvic acid (PLFA), Suwannee River fulvic acid (SRFA) and the mixtures of the humic substances and glucose. After incubation, dissolved organic carbon (DOC) concentrations were diminished, and specific UV absorbance values and DOC-normalized fluorescence intensities increased. The microbial changes were minimal for the samples contaning humic substances only whereas they were much pronounced for the mixtures with glucose. The extent of the changes increased with a higher content of glucose in the mixtures. The same trend was observed even for glucose solution. Our results suggest that labile organic moieties may be transformed into more chromophoric and humidified components by biodegradation. For the mixture samples, the copper binding stability constants did not change or even decreased after incubation. Therefore, microbially induced enrichment of the fulvic- and humic-like carbon structures in DOM appears to result in little change or the decrease of the copper binding coefficients.

Properties of Dissolved Organic Carbon (DOC) released by Three Species of Blue- green Algae (남조류에 의해 배출된 용존유기탄소의 특성)

  • Choi, Kwang-Soon;Imai, Akio;Kim, Bom-Chul;Matsushige, Kazuo
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.20-29
    • /
    • 2001
  • The amount, chemical composition and optical property of extracellular dissolved organic carbon (EOC) by phytoplankton were examined using axenic cultures of Microcystis aeruginosa, Anabaena flos-aquae, and Oscillatoria agardhii. The extracellular organic matter was categorized into five fractions (hydrophobic acids; AHSs, hydrophobic neutrals; HoNs, hydrophilic acids; HiAs, hydrophilic bases; HiBs, and hydrophilic neutrals; HiNs) using three adsorbent resins(XAD-8, cation, and anion). The release pattern and chemical composition of EOC varied with algal species and their growth phases. Percentage of extracellular release increased with age in all cultures. HiAs were the dominant component of EOC in all cultures, whereas the proportion of HiAs decreased with age in all cultures. In contrast, the proportions of HiBs and HiNs increased as cultures aged. In particular, the HiN fraction increased from 0% to 44% of EOC in M. aeruginosa and from 3.0% to 28% in A. flos-aquae, respectively. The proportion of AHSs was higher in the cultures of A. flos-aquae(7.5${\sim}$16%) and O. agardhii (8.7${\sim}$16%) than M. aeruginosa(0.2${\sim}$2.5%). The proportions of AHSs increased with culture age in M. aeruginosa and O. agardhii, but decreased in A. flos-aquae. The specific UV absorbance also varied among species; 1.9 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for M. aeruginosa, 3.7 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for A. flos-aquae, and 13.0 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L^{-1}$ for O. agardhii. The results of this study indicates that DOC excreted by three blue-green algae differed with species and the growth phase.

  • PDF