• Title/Summary/Keyword: Specific Stiffness

Search Result 331, Processing Time 0.033 seconds

Experimental tests and global modeling of masonry infilled frames

  • Bergami, Alessandro Vittorio;Nuti, Camillo
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.281-303
    • /
    • 2015
  • The effects of infill panels on the response of r.c. frames subjected to seismic action are widely recognized. Numerous experimental investigations were effected and several analytical models were developed on this subject. This work, which is part of a larger project dealing with specific materials and structures commonly used in Italy, discusses experimental tests on masonry and samples of bare and infilled portals. The experimental activity includes tests on elemental materials, and 12 wall samples. Finally, three one-bay one-story reinforced concrete frames, designed according to the outdated Italian technical code D.M. 1996 without seismic details, were tested (bare and infilled) under constant vertical and cyclic lateral load. The first cracks observed on the framed walls occurred at a drift of about 0.3%, reaching its maximum capacity at a drift of 0.5% while retaining its capacity up to a drift of 0.6%. Infill contributed to both the stiffness and strength of the bare reinforced concrete frame at small drifts thus improving overall system behavior. In addition to the experimental activities, previously mentioned, the recalibration of a model proposed by Comberscue (1996) was evaluated. The accuracy of an OpenSees non linear fiber based model of the prototype tested, including a strut element was verified through a comparison with the final experimental results. This work has been partially supported by research grant DPC-ReLUIS 2014.

Simulation of experiments on RC frames strengthened with dissipative steel links

  • Georgiadi-Stefanidi, Kyriaki;Mistakidis, Euripidis;Stylianidis, Kosmas Athanasios
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.253-272
    • /
    • 2013
  • The use of steel bracing systems is a popular method for the strengthening of existing reinforced concrete (RC) frames and may lead to a substantial increase of both strength and stiffness. However, in most retrofitting cases, the main target is the increase of the energy dissipation capacity. This paper studies numerically the efficiency of a specific strengthening methodology which utilizes a steel link element having a cross-section of various shapes, connected to the RC frame through bracing elements. The energy is dissipated through the yielding of the steel link element. The case studied is a typical one bay, single-storey RC frame, constructed according to older code provisions, which is strengthened through two different types of link elements. The presented numerical models are based on tests which are simulated in order to gain a better insight of the behaviour of the strengthened structures, but also in order to study the effects of different configurations for the link element. The behaviour of the strengthened frames is studied with respect to the one of the original bare frame. Moreover, the numerically obtained results are compared to the experimentally obtained ones, in order to verify the effectiveness of the applied simulation methodology.

Trends in Utilization of Transnasal Esophagoscopy (경비강 식도경의 임상적 활용)

  • Park, Il-Seok
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.29 no.2
    • /
    • pp.67-69
    • /
    • 2018
  • The development of office-based, unsedated transnasal esophagoscopy (TNE) has proven to be a major technological advance and with time and experience the application of this technology is becoming more widespread. TNE has allowed otolaryngologists to perform a variety of diagnostic and therapeutic procedures in the office setting. Studies consistently demonstrate that the image quality and diagnostic capability of TNE is equivalent to conventional esophagoscopy. The modern TNE endoscopes offer high quality optics, air-insufflation, and irrigation capability through a 2-mm working channel, and the ability to perform biopsies and select procedures. In general, the role of TNE in the head and neck patient is three-fold : to screen for synchronous and metachronous esophageal squamous cell carcinoma (ESCC) ; to differentiate post-treatment changes/symptoms from malignancy ; and to perform certain office-based procedures. TNE offers many specific advantages to the head and neck patient that are not afforded by conventional esophagoscopy. Because of surgical and postirradiation changes, many HNSCC patients have trismus or neck stiffness preventing completion of conventional transoral esophagoscopy. Perhaps most importantly, TNE provides enhanced patient safety, increased tolerability, better practice efficiency, and cost savings. For these reasons, TNE has become a particularly useful tool in the otolaryngologist's armamentarium.

Development of Carbon Composite Bipolar Plates for PEMFC (양성자 교환막 연료전지용 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • The proton exchange membrane fuel cell (PEMFC) system has many potential uses as an environmentally friendly power source. Carbon fiber composite bipolar plates are highly corrosion resistant and have high specific strength and stiffness in acidic environments, however, the relatively low electrical conductivity is a major issue which reduces the efficiency of PEMFC. In this study, electrically conductive particles (graphite powder and carbon black) are applied to carbon-epoxy composite prepregs to reduce the electrical resistance of the bipolar plates. The electrical resistance and mechanical properties are measured using conventional test methods, and a unit cell performance evaluation of developed carbon composite bipolar plates is performed to compare with the conventional bipolar plate.

Seismic Performance of Reinforced Concrete Frame Retrofitted with Opening-Isolated Type System (개구부 격리형 시스템으로 보강된 철근콘크리트 골조의 내진성능)

  • Park, Wan-Shin;Kim, Sun-Woo;Jung, Hyun-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • The purpose of this study is to experimentally evaluate the effect of improving seismic performance by applying the details of seismic reinforcement to the reinforced concrete frame with non-seismic details while maintaining the original opening shape. In this study, based on CF specimens with specific seismic details, a total of four full scale specimens were designed and fabricated. The main variables are the width and spacing of steel dampers installed in the upper and lower parts of seismic reinforcement details, and the presence or absence of torsion springs installed in the hinges. As a result of the test, it was evaluated to be helpful for seismic retrofit and opening isolation of steel dampers installed at the upper and lower parts of the seismic reinforcement details and torsion springs installed at the joints. In particular, CFR2S specimens with torsion springs showed the best performance in terms of strength, stiffness and energy dissipation capacity with increasing displacement angle.

Development and Cyclic Behavior of U-Shaped Steel Dampers with Perforated and Nonparallel Arm Configurations

  • Atasever, Kurtulus;Celik, Oguz C.;Yuksel, Ercan
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1741-1753
    • /
    • 2018
  • Metallic dampers are sacrificial devices (fuses) that dissipate significant energy during earthquakes while protecting other parts of structures from possible damage. In addition to numerous implementation opportunities of other base isolation systems, U-shaped dampers (UD) are one of the widely investigated and used devices in practice especially in Japan. The present study focuses on enhancing seismic performance of these types of dampers by changing their geometric properties. UDs with perforated (i.e. with holes) and/or nonparallel arms are developed for this purpose. For a better comparison, the criterion of equal material volume (or mass) has been utilized. Three dimensional finite element models of the new type of UDs are formed and investigated numerically under selected displacement histories. Based on the obtained hysteretic curves; dissipated energy intensities, effective stiffness ratios, reaction forces, effective damping ratios are evaluated in this parametric study. It is found that both damper types have merits in use of seismic applications and that the selection of the damper configuration is dependent on the design specific issues.

Improving Machining Quality of L-Shaped Thin-Walled Structure in Milling Process of Ti-Alloy (Ti-6Al-4V) (티타늄 합금(Ti-6A1-4V)의 밀링가공에서 L자형 얇은 벽 구조의 가공품질 향상)

  • Kim, Jong-Min;Koo, Joon-Young;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.52-59
    • /
    • 2021
  • Titanium alloy (Ti-alloy) is widely used as a material for core parts of aircraft structures and engines that require both lightweight and heat-resistant properties owing to their high specific stiffness. Most parts used in aircraft have I-, L-, and H-shaped thin-walled structures for weight reduction. It is difficult to machine thin-walled structures owing to vibrations and deformations during machining. In particular, cutting tool damage occurs in the corners of thin-walled structures owing to the rapid increase in cutting force and vibration, and machining quality deteriorates because of deep tool marks on machined surfaces. In this study, milling experiments were performed to derive an effective method for machining a L-shaped thin-walled structure with Ti-alloy (Ti-6Al-4V). Three types of machining experiment were performed. The surface quality, tool wear, cutting force, and vibration were analyzed comprehensively, and an effective machining method in terms of tool life and machining quality was derived.

Application of three-dimensional modified inclined braces to control soft-story buildings

  • Nodehi, Soroush;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.811-824
    • /
    • 2022
  • Despite its disadvantages, soft story can reduce the damage to the upper floors by concentrating drift in that specific story provided that large drifts are avoided. Gapped-Inclined Brace (GIB) with reduced P-delta effects and the control of soft story stiffness makes it possible to take advantage of the soft story in buildings and increase their capacity for energy dissipation. OpenSees software is used in this study to validate and modify the GIB model's shortcomings. Also, the analysis method for this element is changed for design. The modified element is evaluated in 3D analysis. Finally, to retrofit an existing building, this element is used. Based on the Iranian seismic code, a six-story reinforced concrete building is modelled and studied with 3D analysis. In this building, the construction shortcomings and elimination of infills on the ground floor cause the formation of a soft story. Results of nonlinear static analysis, nonlinear dynamic, and incremental dynamic analysis using both components of seismic acceleration applied to the structure at different angles and the fragility curves indicate the improvement of the retrofitted structure's performance using the modified element to reach the required performance level following the retrofit code.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Reliability Analysis for Composite Plate with the Various Design Requirement (다양한 설계 요구조건을 고려한 복합재 평판의 신뢰성 해석)

  • Lee, Seok-Je;Jang, Moon-Ho;Kim, In-Gul
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.25-30
    • /
    • 2007
  • The advanced fiber-reinforced laminated composites are widely used in a variety of engineering applications such as aerospace, marine, mechanical and civil engineering for weight savings because of their high specific strength and stiffness. The material properties of ply is known to have larger variations than that of conventional materials and very sensitive to the loading direction. Therefore, it is important to consider the variations on designing the laminated composite. This paper demonstrates the importance of considering uncertainties through examining the effect of material properties variations on various design requirements such as tip deflection, natural frequency and buckling stress using COMSOL-MATLAB interface.