• Title/Summary/Keyword: Specific Flow Rate

Search Result 548, Processing Time 0.026 seconds

Finding Optimal Mass Flow Rate of Liquid Rocket Engine Using Generic Algorithm (유전알고리즘을 이용한 액체로켓엔진 최적 유량 결정)

  • Lee, Sang-Bok;Jang, Jun-Yeoung;Kim, Wan-Jo;Kim, Young-Ho;Roh, Tae-Seoung;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.93-96
    • /
    • 2011
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Mass flow rate to the main thrust chamber, mass flow rate to the gas generator and chamber pressure have been selected as design variables. The target engine is the open gas generator cycle using the LO2/RP-1 propellant. The objective function of design optimization is to maximize the specific impulse with condition of energy balance between the pump and the turbine. The properties of the combustion chamber have been obtained from CEA2. Pump & turbine efficiencies and properties of the gas generator have been modeled mathematically from reference data. The result shows 3~4% errors for the specific impulse and 2~6% errors for the pump power of the gas generator cycle compared to references.

  • PDF

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(I) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (I))

  • 김형문;이상길;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • In the present paper an attempt has been made to simulate the secondary injection-primary flow interaction in the conical rocket nozzle and to derive the performance of secondary injection thrust vector control(SITVC) system. Complex three-dimensional flowfield induced by the secondary injection is numerically analyzed by solving unsteady three-dimensional Euler equation with Beam and Warming's implicit approximate factorization method. Emphasized in the present study is the effect of secondary injection such as secondary mass flow rates and the momentum of secondary/primary nozzle flow mass rates upon the gross system performance parameters such as thrust ratio, specific impulse ratio and deflection angle. The results obtained in terms of system performance parameters show that lower secondary mass flow rate is advantageous for to reduce secondary specific impulse loss. It is further found that the nozzle with secondary jet injected downstream and interacting with fast primary flow is preferable for efficient and stable SITVC over the wide range of use with the penalty of side specific impulse loss.

  • PDF

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

Visualization of Hysteresis Phenomenon of Shock Waves in Supersonic Internal Flow

  • Suryan, Abhilash;Shin, Choon-Sik;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • Hysteresis is an effect by which the order of previous events influences the order of subsequent events. Hysteresis phenomenon of supersonic internal flows with shock waves has not yet been clarified satisfactorily. In the present study, experiments are carried out on internal flow in a supersonic nozzle to clarify the hysteresis phenomena for the shock waves. Flow visualization is carried out separately on the straight and divergent channels downstream of the nozzle throat section. Results obtained were compared with numerically simulated data. The results confirmed hysteresis phenomenon for shock wave in the Laval nozzle at a certain specific condition. The relationship between hysteresis phenomenon and the range of the rate of change of pressure ratio with time was shown experimentally. The existence of hysteretic behavior in the formation, both the location and strength, of shock wave in the straight part of the supersonic nozzle with a range of pressure ratio has also been confirmed numerically.

Evaluation of Reverse Electrodialysis based on the Number of Cell Pairs and Stack Size Using Patterned Ion Exchange Membrane (패턴형 이온교환막을 이용한 스택의 셀 수 및 크기에 따른 역전기투석 성능 평가)

  • Dong-Gun Lee;Hanki Kim;Namjo Jeong;Young Sun Mok;Jiyeon Choi
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • Salinity gradient energy can be generated from a mixture of water streams with different salt concentrations by using reverse electrodialysis (RED). In this study, we evaluated the effect of stack size and number of cell pairs on the energy efficiency and specific energy of the RED process. Additionally, we studied the prementioned parameters to maximize the power density of RED. The performance of the RED stack which used a patterned ion exchange membrane, was evaluated as a function of stack size and feed flow rate. Moreover, it was noted that an increase in stack size increased the ion movement through the ion exchange membrane. Furthermore, an increase in feed flow rate led to a reduction in the concentration variation, resulting in an increase in OCV and power density. The energy efficiency and specific energy for 100 cells in the 10 × 10 cm2 stack were the highest at 12% and 0.05 kWh/m3, respectively, while the power density from 0.33 cm/s to 5 × 5 cm2 stack was the highest at 0.53 W/m2. The study showed that the RED performance can be improved by altering the size of the stack and the number of cell pairs, thereby positively affecting energy efficiency and specific energy.

Thermo-fluid Dynamic Analysis through a Numerical Simulation of Canister (수치 모사를 통한 사출관 내부의 열유동 해석)

  • Kim, Hyun muk;Bae, Seong hun;Park, Cheol hyeon;Jeon, Hyeok soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2017
  • A thermo-fluid dynamic analysis was performed through the numerical simulation of a missile canister. Calculation was made in a fixed analytical volume and fully evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and parametric study was performed with the change of coolant flow rate. It could be found that the pressure on the canister top nonlinearly increased with the increase of coolant flow rate. Temperature and coolant distribution were closely related to the flow behavior in canister. Temperature on the canister bottom indicated a decrease being proportional to coolant flow rate in early times but after a specific time, the temperature increased with the tendency being reversed. In addition, the early part of temperature showed a fluctuating phenomenon because of the overall circulatory flow of mixture gas.

A Study on the Build-up Model for the Discount Rate of Technology Valuation including Intellectual Property Risk (지식자산위험을 고려한 기술가치평가 할인율 적산모형에 관한 연구)

  • Sung, Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.241-263
    • /
    • 2008
  • Within any income approach, a discount rate is used to convert some projected free cash flow to its presented value. In case of valuing companies, the most frequently used discount rate is the weighted average cost of capital(WACC) at the aggregate level. But technology valuation is different to discounting aggregate corporate cash flow since it is concerned about individual Intellectual property. Therefore, blindly applying standard discount rate such as WACC in technology valuation is unlikely to lead to the right result. The primary focus of this paper is to establish the structure of discount rate for technology valuation and to suggest the method of estimation. To determine an appropriate discount rate for technology valuation, the level of technology risk, market risk and competitive risk should be included in the structure of discount rate. This paper suggests the build-up model which consists of three components as a expansion of the CAPM. It includes (1) a risk-free rate of return, (2) general market risk premium and beta and (3) intellectual property risk premium related to technology risk and specific target market risk. However, there is no specific check list for examining the intellectual property risk until now and no specific method for quantifying its risk into risk premium. This paper developed the 10 element to determine the level of the intellectual property risk and applied estimation function such as linear function, natural log function and exponential function to transform the level of risk into risk premium. The limitation of this paper is that the range of intellectual property risk premium is inferred based on the information of foreign and domestic valuation agency. Finally, this paper explored the development of an intellectual property discount rate for technology valuation and presented the method in order to quantify the intellectual property risk premium.

  • PDF

Effect of Operating Variables on the Morphology of Precipitated Calcium Carbonate in a Slurry Bubble Reactor (슬러리 기포탑 반응기에서 침강성 탄산칼슘의 모폴로지에 대한 조업변수들의 영향)

  • Hwang, Jung-Woo;Lee, Yoong;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.124-131
    • /
    • 2010
  • Effects of $Ca(OH)_2$ concentration (0.16~0.64 wt%), surfactant concentration (2~16 wt%), total volumetric flow rate (3~6 L/min) and $CO_2$ volume fraction $(0.3{\sim}0.6)$ on morphology, crystal structure, mean particle diameter, aggregation and specific surface area of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor ($0.11\;m-ID{\times}1.0\;m-high$) with a internal tube ($0.04\;m-ID{\times}1.0\;m-high$h). The reaction time of $CaCO_3$ synthesis decreased with adding Dispex N40 of the anionic surfactant. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the single crystal of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt %) and the concentration of Dispex N40 (2 wt%). The mean particle size of $CaCO_3$ varied with adding Dispex N40. In addition, the specific surface area of $CaCO_3$ increased with adding of surfactant (2 wt%) from $35m^2/g$ to $44m^2/g$ at the volumetric flow rate of $CO_2$ (0.9 L/min) and the concentration of $Ca(OH)_2$(0.64 wt %).

Injector Head Design of 170tonf UDMH-LOX Liquid Rocket Engine (추력 170톤급 UDMH-LOX 계열 액체로켓엔진의 인젝터 헤드 설계)

  • Lim, Seok-Hee;Gostsev, V.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.207-210
    • /
    • 2006
  • Injector is one of the most important elements in Liquid rocket Engine design, and how to arrange these injectors on the head determines the engine performance. In this study, when the swirl injectors are used for the 1st designing of injector head of 170 tonf UDMH-LOX as the propellant of LRE, a distribution relation of the mass flow rate per unit area was calculated from the function of ${\Phi}$, which is related with the mass flow rate characteristics of swirl injector. And the combustion characteristics by circumferential axis were estimated using this relation under the consideration of combustion core and film cooling area.

  • PDF

An Experimental Investigation on the Contamination Sensitivity of an Automotive Fuel Pump

  • Lee Jae-Cheon;Shin Hyun-Myng
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.51-55
    • /
    • 2005
  • This study addresses the contamination sensitivity test of a typical fuel pump for an automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of a fuel pump on specific contaminant particle sizes so that an optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of the fuel pump is measured under the experiments of various contaminants size ranges of ISO test dust up to $80\;{\mu}m$. The fundamental theory of contamination sensitivity is introduced and the contamination sensitivity coefficients are estimated using the experimental data. Maximum contamination sensitivity coefficient of $5\chi\;10^{-6}\;L/min{\cdot}Ea$ is found in the contaminant size range of $40\;{\mu}m\~50\;{\mu}m$. The magnified picture of the surface of vane disc reveals that the abrasive wear is the principal cause of discharge flow rate degradation. Hence, this study reveals that a high efficiency filter for contaminant particles especially in the size range of $30\;{\mu}m\~70\;{\mu}m$ especially should be used to maintain the service life of the fuel filter.